حل مسائل x (complex solution)
x=\sqrt{5}-1\approx 1.236067977
x=-\left(\sqrt{5}+1\right)\approx -3.236067977
حل مسائل x
x=\sqrt{5}-1\approx 1.236067977
x=-\sqrt{5}-1\approx -3.236067977
رسم بياني
مشاركة
تم النسخ للحافظة
5x^{2}+10x-20=0
يمكن حل كل المعادلات بالصيغة ax^{2}+bx+c=0 باستخدام الصيغة التربيعية: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. وتقدم الصيغة التربيعية حلين، أحدهما عندما يكون ± جمعاً والآخر عندما يكون طرحاً.
x=\frac{-10±\sqrt{10^{2}-4\times 5\left(-20\right)}}{2\times 5}
هذه المعادلة بالصيغة العامة: ax^{2}+bx+c=0. عوّض عن a بالقيمة 5 وعن b بالقيمة 10 وعن c بالقيمة -20 في الصيغة التربيعية، \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 5\left(-20\right)}}{2\times 5}
مربع 10.
x=\frac{-10±\sqrt{100-20\left(-20\right)}}{2\times 5}
اضرب -4 في 5.
x=\frac{-10±\sqrt{100+400}}{2\times 5}
اضرب -20 في -20.
x=\frac{-10±\sqrt{500}}{2\times 5}
اجمع 100 مع 400.
x=\frac{-10±10\sqrt{5}}{2\times 5}
استخدم الجذر التربيعي للعدد 500.
x=\frac{-10±10\sqrt{5}}{10}
اضرب 2 في 5.
x=\frac{10\sqrt{5}-10}{10}
حل المعادلة x=\frac{-10±10\sqrt{5}}{10} الآن عندما يكون ± موجباً. اجمع -10 مع 10\sqrt{5}.
x=\sqrt{5}-1
اقسم -10+10\sqrt{5} على 10.
x=\frac{-10\sqrt{5}-10}{10}
حل المعادلة x=\frac{-10±10\sqrt{5}}{10} الآن عندما يكون ± سالباً. اطرح 10\sqrt{5} من -10.
x=-\sqrt{5}-1
اقسم -10-10\sqrt{5} على 10.
x=\sqrt{5}-1 x=-\sqrt{5}-1
تم حل المعادلة الآن.
5x^{2}+10x-20=0
يمكن حل المعادلات من الدرجة الثانية مثل هذه المعادلة بإكمال المربع. لإكمال المربع، يجب أن تكون المعادلة بالصيغة x^{2}+bx=c.
5x^{2}+10x-20-\left(-20\right)=-\left(-20\right)
أضف 20 إلى طرفي المعادلة.
5x^{2}+10x=-\left(-20\right)
ناتج طرح -20 من نفسه يساوي 0.
5x^{2}+10x=20
اطرح -20 من 0.
\frac{5x^{2}+10x}{5}=\frac{20}{5}
قسمة طرفي المعادلة على 5.
x^{2}+\frac{10}{5}x=\frac{20}{5}
القسمة على 5 تؤدي إلى التراجع عن الضرب في 5.
x^{2}+2x=\frac{20}{5}
اقسم 10 على 5.
x^{2}+2x=4
اقسم 20 على 5.
x^{2}+2x+1^{2}=4+1^{2}
اقسم 2، معامل الحد x، على 2 لتحصل على 1، ثم اجمع مربع 1 مع طرفي المعادلة. تجعل هذه الخطوة الطرف الأيسر من المعادلة مربعاً تاماً.
x^{2}+2x+1=4+1
مربع 1.
x^{2}+2x+1=5
اجمع 4 مع 1.
\left(x+1\right)^{2}=5
عامل x^{2}+2x+1. بشكل عام، عندما تكون x^{2}+bx+c مربعا مثاليا، يمكن تحليلها دائما ك "\left(x+\frac{b}{2}\right)^{2}".
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
استخدم الجذر التربيعي لطرفي المعادلة.
x+1=\sqrt{5} x+1=-\sqrt{5}
تبسيط.
x=\sqrt{5}-1 x=-\sqrt{5}-1
اطرح 1 من طرفي المعادلة.
5x^{2}+10x-20=0
يمكن حل كل المعادلات بالصيغة ax^{2}+bx+c=0 باستخدام الصيغة التربيعية: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. وتقدم الصيغة التربيعية حلين، أحدهما عندما يكون ± جمعاً والآخر عندما يكون طرحاً.
x=\frac{-10±\sqrt{10^{2}-4\times 5\left(-20\right)}}{2\times 5}
هذه المعادلة بالصيغة العامة: ax^{2}+bx+c=0. عوّض عن a بالقيمة 5 وعن b بالقيمة 10 وعن c بالقيمة -20 في الصيغة التربيعية، \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 5\left(-20\right)}}{2\times 5}
مربع 10.
x=\frac{-10±\sqrt{100-20\left(-20\right)}}{2\times 5}
اضرب -4 في 5.
x=\frac{-10±\sqrt{100+400}}{2\times 5}
اضرب -20 في -20.
x=\frac{-10±\sqrt{500}}{2\times 5}
اجمع 100 مع 400.
x=\frac{-10±10\sqrt{5}}{2\times 5}
استخدم الجذر التربيعي للعدد 500.
x=\frac{-10±10\sqrt{5}}{10}
اضرب 2 في 5.
x=\frac{10\sqrt{5}-10}{10}
حل المعادلة x=\frac{-10±10\sqrt{5}}{10} الآن عندما يكون ± موجباً. اجمع -10 مع 10\sqrt{5}.
x=\sqrt{5}-1
اقسم -10+10\sqrt{5} على 10.
x=\frac{-10\sqrt{5}-10}{10}
حل المعادلة x=\frac{-10±10\sqrt{5}}{10} الآن عندما يكون ± سالباً. اطرح 10\sqrt{5} من -10.
x=-\sqrt{5}-1
اقسم -10-10\sqrt{5} على 10.
x=\sqrt{5}-1 x=-\sqrt{5}-1
تم حل المعادلة الآن.
5x^{2}+10x-20=0
يمكن حل المعادلات من الدرجة الثانية مثل هذه المعادلة بإكمال المربع. لإكمال المربع، يجب أن تكون المعادلة بالصيغة x^{2}+bx=c.
5x^{2}+10x-20-\left(-20\right)=-\left(-20\right)
أضف 20 إلى طرفي المعادلة.
5x^{2}+10x=-\left(-20\right)
ناتج طرح -20 من نفسه يساوي 0.
5x^{2}+10x=20
اطرح -20 من 0.
\frac{5x^{2}+10x}{5}=\frac{20}{5}
قسمة طرفي المعادلة على 5.
x^{2}+\frac{10}{5}x=\frac{20}{5}
القسمة على 5 تؤدي إلى التراجع عن الضرب في 5.
x^{2}+2x=\frac{20}{5}
اقسم 10 على 5.
x^{2}+2x=4
اقسم 20 على 5.
x^{2}+2x+1^{2}=4+1^{2}
اقسم 2، معامل الحد x، على 2 لتحصل على 1، ثم اجمع مربع 1 مع طرفي المعادلة. تجعل هذه الخطوة الطرف الأيسر من المعادلة مربعاً تاماً.
x^{2}+2x+1=4+1
مربع 1.
x^{2}+2x+1=5
اجمع 4 مع 1.
\left(x+1\right)^{2}=5
عامل x^{2}+2x+1. بشكل عام، عندما تكون x^{2}+bx+c مربعا مثاليا، يمكن تحليلها دائما ك "\left(x+\frac{b}{2}\right)^{2}".
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
استخدم الجذر التربيعي لطرفي المعادلة.
x+1=\sqrt{5} x+1=-\sqrt{5}
تبسيط.
x=\sqrt{5}-1 x=-\sqrt{5}-1
اطرح 1 من طرفي المعادلة.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}