تجاوز إلى المحتوى الرئيسي
حل مسائل x (complex solution)
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

4x^{2}+6x+10=0
يمكن حل كل المعادلات بالصيغة ax^{2}+bx+c=0 باستخدام الصيغة التربيعية: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. وتقدم الصيغة التربيعية حلين، أحدهما عندما يكون ± جمعاً والآخر عندما يكون طرحاً.
x=\frac{-6±\sqrt{6^{2}-4\times 4\times 10}}{2\times 4}
هذه المعادلة بالصيغة العامة: ax^{2}+bx+c=0. عوّض عن a بالقيمة 4 وعن b بالقيمة 6 وعن c بالقيمة 10 في الصيغة التربيعية، \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 4\times 10}}{2\times 4}
مربع 6.
x=\frac{-6±\sqrt{36-16\times 10}}{2\times 4}
اضرب -4 في 4.
x=\frac{-6±\sqrt{36-160}}{2\times 4}
اضرب -16 في 10.
x=\frac{-6±\sqrt{-124}}{2\times 4}
اجمع 36 مع -160.
x=\frac{-6±2\sqrt{31}i}{2\times 4}
استخدم الجذر التربيعي للعدد -124.
x=\frac{-6±2\sqrt{31}i}{8}
اضرب 2 في 4.
x=\frac{-6+2\sqrt{31}i}{8}
حل المعادلة x=\frac{-6±2\sqrt{31}i}{8} الآن عندما يكون ± موجباً. اجمع -6 مع 2i\sqrt{31}.
x=\frac{-3+\sqrt{31}i}{4}
اقسم -6+2i\sqrt{31} على 8.
x=\frac{-2\sqrt{31}i-6}{8}
حل المعادلة x=\frac{-6±2\sqrt{31}i}{8} الآن عندما يكون ± سالباً. اطرح 2i\sqrt{31} من -6.
x=\frac{-\sqrt{31}i-3}{4}
اقسم -6-2i\sqrt{31} على 8.
x=\frac{-3+\sqrt{31}i}{4} x=\frac{-\sqrt{31}i-3}{4}
تم حل المعادلة الآن.
4x^{2}+6x+10=0
يمكن حل المعادلات من الدرجة الثانية مثل هذه المعادلة بإكمال المربع. لإكمال المربع، يجب أن تكون المعادلة بالصيغة x^{2}+bx=c.
4x^{2}+6x+10-10=-10
اطرح 10 من طرفي المعادلة.
4x^{2}+6x=-10
ناتج طرح 10 من نفسه يساوي 0.
\frac{4x^{2}+6x}{4}=-\frac{10}{4}
قسمة طرفي المعادلة على 4.
x^{2}+\frac{6}{4}x=-\frac{10}{4}
القسمة على 4 تؤدي إلى التراجع عن الضرب في 4.
x^{2}+\frac{3}{2}x=-\frac{10}{4}
اختزل الكسر \frac{6}{4} إلى أبسط قيمة من خلال استخراج 2 وشطبه.
x^{2}+\frac{3}{2}x=-\frac{5}{2}
اختزل الكسر \frac{-10}{4} إلى أبسط قيمة من خلال استخراج 2 وشطبه.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=-\frac{5}{2}+\left(\frac{3}{4}\right)^{2}
اقسم \frac{3}{2}، معامل الحد x، على 2 لتحصل على \frac{3}{4}، ثم اجمع مربع \frac{3}{4} مع طرفي المعادلة. تجعل هذه الخطوة الطرف الأيسر من المعادلة مربعاً تاماً.
x^{2}+\frac{3}{2}x+\frac{9}{16}=-\frac{5}{2}+\frac{9}{16}
تربيع \frac{3}{4} من خلال تربيع كل من البسط والمقام في الكسر.
x^{2}+\frac{3}{2}x+\frac{9}{16}=-\frac{31}{16}
اجمع -\frac{5}{2} مع \frac{9}{16} من خلال إيجاد مقام مشترك وإضافة البسط. بعد ذلك، اختزل الكسر إلى أبسط قيمة إذا كان ذلك ممكناً.
\left(x+\frac{3}{4}\right)^{2}=-\frac{31}{16}
عامل x^{2}+\frac{3}{2}x+\frac{9}{16}. بشكل عام، عندما تكون x^{2}+bx+c مربعا مثاليا، يمكن تحليلها دائما ك "\left(x+\frac{b}{2}\right)^{2}".
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{-\frac{31}{16}}
استخدم الجذر التربيعي لطرفي المعادلة.
x+\frac{3}{4}=\frac{\sqrt{31}i}{4} x+\frac{3}{4}=-\frac{\sqrt{31}i}{4}
تبسيط.
x=\frac{-3+\sqrt{31}i}{4} x=\frac{-\sqrt{31}i-3}{4}
اطرح \frac{3}{4} من طرفي المعادلة.