حل مسائل x، y
x=0
y=0
رسم بياني
اختبار
Simultaneous Equation
5 من المسائل المشابهة لـ :
4 x + 2 y = 0 \quad \text { D) } 6 x - 2 y = 0
مشاركة
تم النسخ للحافظة
4x+2y=0,6x-2y=0
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
4x+2y=0
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
4x=-2y
اطرح 2y من طرفي المعادلة.
x=\frac{1}{4}\left(-2\right)y
قسمة طرفي المعادلة على 4.
x=-\frac{1}{2}y
اضرب \frac{1}{4} في -2y.
6\left(-\frac{1}{2}\right)y-2y=0
عوّض عن x بالقيمة -\frac{y}{2} في المعادلة الأخرى، 6x-2y=0.
-3y-2y=0
اضرب 6 في -\frac{y}{2}.
-5y=0
اجمع -3y مع -2y.
y=0
قسمة طرفي المعادلة على -5.
x=0
عوّض عن y بالقيمة 0 في x=-\frac{1}{2}y. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=0,y=0
تم إصلاح النظام الآن.
4x+2y=0,6x-2y=0
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}4&2\\6&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}4&2\\6&-2\end{matrix}\right))\left(\begin{matrix}4&2\\6&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\6&-2\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}4&2\\6&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\6&-2\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\6&-2\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{4\left(-2\right)-2\times 6}&-\frac{2}{4\left(-2\right)-2\times 6}\\-\frac{6}{4\left(-2\right)-2\times 6}&\frac{4}{4\left(-2\right)-2\times 6}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{1}{10}\\\frac{3}{10}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
اضرب المصفوفات.
x=0,y=0
استخرج عنصري المصفوفة x وy.
4x+2y=0,6x-2y=0
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
6\times 4x+6\times 2y=0,4\times 6x+4\left(-2\right)y=0
لجعل 4x و6x متساويين، اضرب كل حدود طرفي المعادلة الأولى في 6 وكل حدود طرفي المعادلة الثانية في 4.
24x+12y=0,24x-8y=0
تبسيط.
24x-24x+12y+8y=0
اطرح 24x-8y=0 من 24x+12y=0 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
12y+8y=0
اجمع 24x مع -24x. حذف الحدين 24x و-24x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
20y=0
اجمع 12y مع 8y.
y=0
قسمة طرفي المعادلة على 20.
6x=0
عوّض عن y بالقيمة 0 في 6x-2y=0. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=0
قسمة طرفي المعادلة على 6.
x=0,y=0
تم إصلاح النظام الآن.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}