تحليل العوامل
4\left(a-\frac{1-\sqrt{2}}{2}\right)\left(a-\frac{\sqrt{2}+1}{2}\right)
تقييم
4a^{2}-4a-1
مشاركة
تم النسخ للحافظة
4a^{2}-4a-1=0
يمكن تحديد عوامل متعددة الحدود التربيعية باستخدام التحويل ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)، التي يكون بها x_{1} وx_{2} حلولاً للمعادلة التربيعية ax^{2}+bx+c=0.
a=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\left(-1\right)}}{2\times 4}
يمكن حل كل المعادلات بالصيغة ax^{2}+bx+c=0 باستخدام الصيغة التربيعية: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. وتقدم الصيغة التربيعية حلين، أحدهما عندما يكون ± جمعاً والآخر عندما يكون طرحاً.
a=\frac{-\left(-4\right)±\sqrt{16-4\times 4\left(-1\right)}}{2\times 4}
مربع -4.
a=\frac{-\left(-4\right)±\sqrt{16-16\left(-1\right)}}{2\times 4}
اضرب -4 في 4.
a=\frac{-\left(-4\right)±\sqrt{16+16}}{2\times 4}
اضرب -16 في -1.
a=\frac{-\left(-4\right)±\sqrt{32}}{2\times 4}
اجمع 16 مع 16.
a=\frac{-\left(-4\right)±4\sqrt{2}}{2\times 4}
استخدم الجذر التربيعي للعدد 32.
a=\frac{4±4\sqrt{2}}{2\times 4}
مقابل -4 هو 4.
a=\frac{4±4\sqrt{2}}{8}
اضرب 2 في 4.
a=\frac{4\sqrt{2}+4}{8}
حل المعادلة a=\frac{4±4\sqrt{2}}{8} الآن عندما يكون ± موجباً. اجمع 4 مع 4\sqrt{2}.
a=\frac{\sqrt{2}+1}{2}
اقسم 4+4\sqrt{2} على 8.
a=\frac{4-4\sqrt{2}}{8}
حل المعادلة a=\frac{4±4\sqrt{2}}{8} الآن عندما يكون ± سالباً. اطرح 4\sqrt{2} من 4.
a=\frac{1-\sqrt{2}}{2}
اقسم 4-4\sqrt{2} على 8.
4a^{2}-4a-1=4\left(a-\frac{\sqrt{2}+1}{2}\right)\left(a-\frac{1-\sqrt{2}}{2}\right)
حلل التعبير الأصلي إلى عوامل باستخدام ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). عوّض \frac{1+\sqrt{2}}{2} بـ x_{1} و\frac{1-\sqrt{2}}{2} بـ x_{2}.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}