حل مسائل x
x=\frac{1}{3}+\frac{\sqrt{2}}{2y_{1}}
y_{1}\neq 0
حل مسائل y_1
y_{1}=\frac{3\sqrt{2}}{2\left(3x-1\right)}
x\neq \frac{1}{3}
رسم بياني
مشاركة
تم النسخ للحافظة
2y_{1}x-\frac{2}{3}y_{1}-\sqrt{2}=0
استخدم خاصية التوزيع لضرب 2y_{1} في x-\frac{1}{3}.
2y_{1}x-\sqrt{2}=\frac{2}{3}y_{1}
إضافة \frac{2}{3}y_{1} لكلا الجانبين. حاصل جمع أي عدد مع صفر يكون العدد نفسه.
2y_{1}x=\frac{2}{3}y_{1}+\sqrt{2}
إضافة \sqrt{2} لكلا الجانبين.
2y_{1}x=\frac{2y_{1}}{3}+\sqrt{2}
المعادلة بالصيغة العامة.
\frac{2y_{1}x}{2y_{1}}=\frac{\frac{2y_{1}}{3}+\sqrt{2}}{2y_{1}}
قسمة طرفي المعادلة على 2y_{1}.
x=\frac{\frac{2y_{1}}{3}+\sqrt{2}}{2y_{1}}
القسمة على 2y_{1} تؤدي إلى التراجع عن الضرب في 2y_{1}.
x=\frac{1}{3}+\frac{\sqrt{2}}{2y_{1}}
اقسم \frac{2y_{1}}{3}+\sqrt{2} على 2y_{1}.
2y_{1}x-\frac{2}{3}y_{1}-\sqrt{2}=0
استخدم خاصية التوزيع لضرب 2y_{1} في x-\frac{1}{3}.
2y_{1}x-\frac{2}{3}y_{1}=\sqrt{2}
إضافة \sqrt{2} لكلا الجانبين. حاصل جمع أي عدد مع صفر يكون العدد نفسه.
\left(2x-\frac{2}{3}\right)y_{1}=\sqrt{2}
اجمع كل الحدود التي تحتوي على y_{1}.
\frac{\left(2x-\frac{2}{3}\right)y_{1}}{2x-\frac{2}{3}}=\frac{\sqrt{2}}{2x-\frac{2}{3}}
قسمة طرفي المعادلة على 2x-\frac{2}{3}.
y_{1}=\frac{\sqrt{2}}{2x-\frac{2}{3}}
القسمة على 2x-\frac{2}{3} تؤدي إلى التراجع عن الضرب في 2x-\frac{2}{3}.
y_{1}=\frac{3\sqrt{2}}{2\left(3x-1\right)}
اقسم \sqrt{2} على 2x-\frac{2}{3}.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}