حل مسائل x
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
x=1
رسم بياني
مشاركة
تم النسخ للحافظة
2x^{2}-10x+3x=10\left(\frac{1}{2}-x\right)
استخدم خاصية التوزيع لضرب 2x في x-5.
2x^{2}-7x=10\left(\frac{1}{2}-x\right)
اجمع -10x مع 3x لتحصل على -7x.
2x^{2}-7x=10\times \frac{1}{2}-10x
استخدم خاصية التوزيع لضرب 10 في \frac{1}{2}-x.
2x^{2}-7x=\frac{10}{2}-10x
اضرب 10 في \frac{1}{2} لتحصل على \frac{10}{2}.
2x^{2}-7x=5-10x
اقسم 10 على 2 لتحصل على 5.
2x^{2}-7x-5=-10x
اطرح 5 من الطرفين.
2x^{2}-7x-5+10x=0
إضافة 10x لكلا الجانبين.
2x^{2}+3x-5=0
اجمع -7x مع 10x لتحصل على 3x.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-5\right)}}{2\times 2}
هذه المعادلة بالصيغة العامة: ax^{2}+bx+c=0. عوّض عن a بالقيمة 2 وعن b بالقيمة 3 وعن c بالقيمة -5 في الصيغة التربيعية، \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
مربع 3.
x=\frac{-3±\sqrt{9-8\left(-5\right)}}{2\times 2}
اضرب -4 في 2.
x=\frac{-3±\sqrt{9+40}}{2\times 2}
اضرب -8 في -5.
x=\frac{-3±\sqrt{49}}{2\times 2}
اجمع 9 مع 40.
x=\frac{-3±7}{2\times 2}
استخدم الجذر التربيعي للعدد 49.
x=\frac{-3±7}{4}
اضرب 2 في 2.
x=\frac{4}{4}
حل المعادلة x=\frac{-3±7}{4} الآن عندما يكون ± موجباً. اجمع -3 مع 7.
x=1
اقسم 4 على 4.
x=-\frac{10}{4}
حل المعادلة x=\frac{-3±7}{4} الآن عندما يكون ± سالباً. اطرح 7 من -3.
x=-\frac{5}{2}
اختزل الكسر \frac{-10}{4} إلى أبسط قيمة من خلال استخراج 2 وشطبه.
x=1 x=-\frac{5}{2}
تم حل المعادلة الآن.
2x^{2}-10x+3x=10\left(\frac{1}{2}-x\right)
استخدم خاصية التوزيع لضرب 2x في x-5.
2x^{2}-7x=10\left(\frac{1}{2}-x\right)
اجمع -10x مع 3x لتحصل على -7x.
2x^{2}-7x=10\times \frac{1}{2}-10x
استخدم خاصية التوزيع لضرب 10 في \frac{1}{2}-x.
2x^{2}-7x=\frac{10}{2}-10x
اضرب 10 في \frac{1}{2} لتحصل على \frac{10}{2}.
2x^{2}-7x=5-10x
اقسم 10 على 2 لتحصل على 5.
2x^{2}-7x+10x=5
إضافة 10x لكلا الجانبين.
2x^{2}+3x=5
اجمع -7x مع 10x لتحصل على 3x.
\frac{2x^{2}+3x}{2}=\frac{5}{2}
قسمة طرفي المعادلة على 2.
x^{2}+\frac{3}{2}x=\frac{5}{2}
القسمة على 2 تؤدي إلى التراجع عن الضرب في 2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(\frac{3}{4}\right)^{2}
اقسم \frac{3}{2}، معامل الحد x، على 2 لتحصل على \frac{3}{4}، ثم اجمع مربع \frac{3}{4} مع طرفي المعادلة. تجعل هذه الخطوة الطرف الأيسر من المعادلة مربعاً تاماً.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
تربيع \frac{3}{4} من خلال تربيع كل من البسط والمقام في الكسر.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
اجمع \frac{5}{2} مع \frac{9}{16} من خلال إيجاد مقام مشترك وإضافة البسط. بعد ذلك، اختزل الكسر إلى أبسط قيمة إذا كان ذلك ممكناً.
\left(x+\frac{3}{4}\right)^{2}=\frac{49}{16}
عامل x^{2}+\frac{3}{2}x+\frac{9}{16}. بشكل عام، عندما تكون x^{2}+bx+c مربعا مثاليا، يمكن تحليلها دائما ك "\left(x+\frac{b}{2}\right)^{2}".
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
استخدم الجذر التربيعي لطرفي المعادلة.
x+\frac{3}{4}=\frac{7}{4} x+\frac{3}{4}=-\frac{7}{4}
تبسيط.
x=1 x=-\frac{5}{2}
اطرح \frac{3}{4} من طرفي المعادلة.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}