حل مسائل x
x=-2
x = \frac{7}{2} = 3\frac{1}{2} = 3.5
رسم بياني
مشاركة
تم النسخ للحافظة
a+b=-3 ab=2\left(-14\right)=-28
لحل المعادلة، حلل عوامل الجانب الأيمن بالتجميع. يجب أولاً إعادة كتابة الجانب الأيمن كالتالي 2x^{2}+ax+bx-14. للعثور علي a وb ، قم باعداد نظام ليتم حله.
1,-28 2,-14 4,-7
بما ان ab سالبه ، فان الa وb لديها العلامات المقابلة. بما أن a+b سالب، فهذا يعني أن للرقم السالب قيمة مطلقة أكبر من الرقم الموجب. إدراج كافة أزواج الأعداد التي تعطي الناتج -28.
1-28=-27 2-14=-12 4-7=-3
حساب المجموع لكل زوج.
a=-7 b=4
الحل هو الزوج الذي يعطي المجموع -3.
\left(2x^{2}-7x\right)+\left(4x-14\right)
إعادة كتابة 2x^{2}-3x-14 ك \left(2x^{2}-7x\right)+\left(4x-14\right).
x\left(2x-7\right)+2\left(2x-7\right)
قم بتحليل الx في أول و2 في المجموعة الثانية.
\left(2x-7\right)\left(x+2\right)
تحليل المصطلحات الشائعة 2x-7 باستخدام الخاصية توزيع.
x=\frac{7}{2} x=-2
للعثور علي حلول المعادلات ، قم بحل 2x-7=0 و x+2=0.
2x^{2}-3x-14=0
يمكن حل كل المعادلات بالصيغة ax^{2}+bx+c=0 باستخدام الصيغة التربيعية: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. وتقدم الصيغة التربيعية حلين، أحدهما عندما يكون ± جمعاً والآخر عندما يكون طرحاً.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-14\right)}}{2\times 2}
هذه المعادلة بالصيغة العامة: ax^{2}+bx+c=0. عوّض عن a بالقيمة 2 وعن b بالقيمة -3 وعن c بالقيمة -14 في الصيغة التربيعية، \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-14\right)}}{2\times 2}
مربع -3.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-14\right)}}{2\times 2}
اضرب -4 في 2.
x=\frac{-\left(-3\right)±\sqrt{9+112}}{2\times 2}
اضرب -8 في -14.
x=\frac{-\left(-3\right)±\sqrt{121}}{2\times 2}
اجمع 9 مع 112.
x=\frac{-\left(-3\right)±11}{2\times 2}
استخدم الجذر التربيعي للعدد 121.
x=\frac{3±11}{2\times 2}
مقابل -3 هو 3.
x=\frac{3±11}{4}
اضرب 2 في 2.
x=\frac{14}{4}
حل المعادلة x=\frac{3±11}{4} الآن عندما يكون ± موجباً. اجمع 3 مع 11.
x=\frac{7}{2}
اختزل الكسر \frac{14}{4} إلى أبسط قيمة من خلال استخراج 2 وشطبه.
x=-\frac{8}{4}
حل المعادلة x=\frac{3±11}{4} الآن عندما يكون ± سالباً. اطرح 11 من 3.
x=-2
اقسم -8 على 4.
x=\frac{7}{2} x=-2
تم حل المعادلة الآن.
2x^{2}-3x-14=0
يمكن حل المعادلات من الدرجة الثانية مثل هذه المعادلة بإكمال المربع. لإكمال المربع، يجب أن تكون المعادلة بالصيغة x^{2}+bx=c.
2x^{2}-3x-14-\left(-14\right)=-\left(-14\right)
أضف 14 إلى طرفي المعادلة.
2x^{2}-3x=-\left(-14\right)
ناتج طرح -14 من نفسه يساوي 0.
2x^{2}-3x=14
اطرح -14 من 0.
\frac{2x^{2}-3x}{2}=\frac{14}{2}
قسمة طرفي المعادلة على 2.
x^{2}-\frac{3}{2}x=\frac{14}{2}
القسمة على 2 تؤدي إلى التراجع عن الضرب في 2.
x^{2}-\frac{3}{2}x=7
اقسم 14 على 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=7+\left(-\frac{3}{4}\right)^{2}
اقسم -\frac{3}{2}، معامل الحد x، على 2 لتحصل على -\frac{3}{4}، ثم اجمع مربع -\frac{3}{4} مع طرفي المعادلة. تجعل هذه الخطوة الطرف الأيسر من المعادلة مربعاً تاماً.
x^{2}-\frac{3}{2}x+\frac{9}{16}=7+\frac{9}{16}
تربيع -\frac{3}{4} من خلال تربيع كل من البسط والمقام في الكسر.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{121}{16}
اجمع 7 مع \frac{9}{16}.
\left(x-\frac{3}{4}\right)^{2}=\frac{121}{16}
عامل x^{2}-\frac{3}{2}x+\frac{9}{16}. بشكل عام، عندما تكون x^{2}+bx+c مربعا مثاليا، يمكن تحليلها دائما ك "\left(x+\frac{b}{2}\right)^{2}".
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
استخدم الجذر التربيعي لطرفي المعادلة.
x-\frac{3}{4}=\frac{11}{4} x-\frac{3}{4}=-\frac{11}{4}
تبسيط.
x=\frac{7}{2} x=-2
أضف \frac{3}{4} إلى طرفي المعادلة.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}