حل مسائل x (complex solution)
x=\frac{1+\sqrt{7}i}{4}\approx 0.25+0.661437828i
x=\frac{-\sqrt{7}i+1}{4}\approx 0.25-0.661437828i
x=-1
حل مسائل x
x=-1
رسم بياني
مشاركة
تم النسخ للحافظة
2xx^{2}+x^{2}+1=0
لا يمكن أن يكون المتغير x مساوياً لـ 0 لأن القسمة على صفر غير محددة. اضرب طرفي المعادلة في x^{2}.
2x^{3}+x^{2}+1=0
لضرب الأسس الخاصة بنفس الأساس، أضف القيم الخاصة بها. اجمع 1 مع 2 للحصول على 3.
±\frac{1}{2},±1
بواسطة نسبي Root نظرية ، فان كافة جذور نسبي الخاصة بمتعدد الحدود موجودة في النموذج \frac{p}{q} ، حيث p يقسم ال1 الثابت وq المعامل الرائدة 2. سرد جميع المرشحين \frac{p}{q}.
x=-1
يمكنك العثور على أحد هذه الجذور من خلال محاولة إدخال كل القيم الصحيحة بدءاً من القيمة المطلقة الصغرى. إذا لم يتم العثور على جذور صحيحة، فجرب استخدام الأعداد الكسرية.
2x^{2}-x+1=0
بواسطة المعامل نظرية ، يعد الx-k عاملا لحدود الشكل لكل k جذر. اقسم 2x^{3}+x^{2}+1 على x+1 لتحصل على 2x^{2}-x+1. حل المعادلة التي يساويها الناتج 0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 2\times 1}}{2\times 2}
يمكن حل كل معادلات النموذج ax^{2}+bx+c=0 باستخدام الصيغة التربيعية: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. استبدل 2 بـ a، و-1 بـ b و1 بـ c في الصيغة التربيعية.
x=\frac{1±\sqrt{-7}}{4}
قم بإجراء العمليات الحسابية.
x=\frac{-\sqrt{7}i+1}{4} x=\frac{1+\sqrt{7}i}{4}
حل المعادلة 2x^{2}-x+1=0 عندما تكون العلامة ± علامة جمع و± علامة طرح.
x=-1 x=\frac{-\sqrt{7}i+1}{4} x=\frac{1+\sqrt{7}i}{4}
إدراج كافة الحلول التي تم العثور عليها.
2xx^{2}+x^{2}+1=0
لا يمكن أن يكون المتغير x مساوياً لـ 0 لأن القسمة على صفر غير محددة. اضرب طرفي المعادلة في x^{2}.
2x^{3}+x^{2}+1=0
لضرب الأسس الخاصة بنفس الأساس، أضف القيم الخاصة بها. اجمع 1 مع 2 للحصول على 3.
±\frac{1}{2},±1
بواسطة نسبي Root نظرية ، فان كافة جذور نسبي الخاصة بمتعدد الحدود موجودة في النموذج \frac{p}{q} ، حيث p يقسم ال1 الثابت وq المعامل الرائدة 2. سرد جميع المرشحين \frac{p}{q}.
x=-1
يمكنك العثور على أحد هذه الجذور من خلال محاولة إدخال كل القيم الصحيحة بدءاً من القيمة المطلقة الصغرى. إذا لم يتم العثور على جذور صحيحة، فجرب استخدام الأعداد الكسرية.
2x^{2}-x+1=0
بواسطة المعامل نظرية ، يعد الx-k عاملا لحدود الشكل لكل k جذر. اقسم 2x^{3}+x^{2}+1 على x+1 لتحصل على 2x^{2}-x+1. حل المعادلة التي يساويها الناتج 0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 2\times 1}}{2\times 2}
يمكن حل كل معادلات النموذج ax^{2}+bx+c=0 باستخدام الصيغة التربيعية: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. استبدل 2 بـ a، و-1 بـ b و1 بـ c في الصيغة التربيعية.
x=\frac{1±\sqrt{-7}}{4}
قم بإجراء العمليات الحسابية.
x\in \emptyset
نظراً لعدم تعريف الجذر التربيعي لرقم سالب في الحقل الحقيقي، لا توجد حلول.
x=-1
إدراج كافة الحلول التي تم العثور عليها.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}