حل مسائل a
a=1
a=-\frac{1}{2}=-0.5
مشاركة
تم النسخ للحافظة
±\frac{1}{2},±1
بواسطة نسبي Root نظرية ، فان كافة جذور نسبي الخاصة بمتعدد الحدود موجودة في النموذج \frac{p}{q} ، حيث p يقسم ال1 الثابت وq المعامل الرائدة 2. سرد جميع المرشحين \frac{p}{q}.
a=1
يمكنك العثور على أحد هذه الجذور من خلال محاولة إدخال كل القيم الصحيحة بدءاً من القيمة المطلقة الصغرى. إذا لم يتم العثور على جذور صحيحة، فجرب استخدام الأعداد الكسرية.
2a^{2}-a-1=0
بواسطة المعامل نظرية ، يعد الa-k عاملا لحدود الشكل لكل k جذر. اقسم 2a^{3}-3a^{2}+1 على a-1 لتحصل على 2a^{2}-a-1. حل المعادلة التي يساويها الناتج 0.
a=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 2\left(-1\right)}}{2\times 2}
يمكن حل كل معادلات النموذج ax^{2}+bx+c=0 باستخدام الصيغة التربيعية: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. استبدل 2 بـ a، و-1 بـ b و-1 بـ c في الصيغة التربيعية.
a=\frac{1±3}{4}
قم بإجراء العمليات الحسابية.
a=-\frac{1}{2} a=1
حل المعادلة 2a^{2}-a-1=0 عندما تكون العلامة ± علامة جمع و± علامة طرح.
a=1 a=-\frac{1}{2}
إدراج كافة الحلول التي تم العثور عليها.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}