تحليل العوامل
3\left(5x^{2}+4x+3\right)
تقييم
15x^{2}+12x+9
رسم بياني
مشاركة
تم النسخ للحافظة
3\left(5x^{2}+4x+3\right)
تحليل 3. لم يتم تحليل متعدد الحدود 5x^{2}+4x+3 إلى عوامل لأنه ليس له أي جذور نسبية.
15x^{2}+12x+9=0
يمكن تحديد عوامل متعددة الحدود التربيعية باستخدام التحويل ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)، التي يكون بها x_{1} وx_{2} حلولاً للمعادلة التربيعية ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\times 15\times 9}}{2\times 15}
يمكن حل كل المعادلات بالصيغة ax^{2}+bx+c=0 باستخدام الصيغة التربيعية: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. وتقدم الصيغة التربيعية حلين، أحدهما عندما يكون ± جمعاً والآخر عندما يكون طرحاً.
x=\frac{-12±\sqrt{144-4\times 15\times 9}}{2\times 15}
مربع 12.
x=\frac{-12±\sqrt{144-60\times 9}}{2\times 15}
اضرب -4 في 15.
x=\frac{-12±\sqrt{144-540}}{2\times 15}
اضرب -60 في 9.
x=\frac{-12±\sqrt{-396}}{2\times 15}
اجمع 144 مع -540.
15x^{2}+12x+9
نظراً لعدم تعريف الجذر التربيعي لرقم سالب في الحقل الحقيقي، لا توجد حلول. يتعذر تحليل عوامل متعددة الحدود التربيعية.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}