تجاوز إلى المحتوى الرئيسي
تحليل العوامل
Tick mark Image
تقييم
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

a+b=-5 ab=12\left(-2\right)=-24
حلل عوامل التعبير بالتجميع. يجب أولاً إعادة كتابة التعبير كالتالي 12x^{2}+ax+bx-2. للعثور علي a وb ، قم باعداد نظام ليتم حله.
1,-24 2,-12 3,-8 4,-6
بما ان ab سالبه ، فان الa وb لديها العلامات المقابلة. بما أن a+b سالب، فهذا يعني أن للرقم السالب قيمة مطلقة أكبر من الرقم الموجب. إدراج كافة أزواج الأعداد التي تعطي الناتج -24.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
حساب المجموع لكل زوج.
a=-8 b=3
الحل هو الزوج الذي يعطي المجموع -5.
\left(12x^{2}-8x\right)+\left(3x-2\right)
إعادة كتابة 12x^{2}-5x-2 ك \left(12x^{2}-8x\right)+\left(3x-2\right).
4x\left(3x-2\right)+3x-2
تحليل 4x في 12x^{2}-8x.
\left(3x-2\right)\left(4x+1\right)
تحليل المصطلحات الشائعة 3x-2 باستخدام الخاصية توزيع.
12x^{2}-5x-2=0
يمكن تحديد عوامل متعددة الحدود التربيعية باستخدام التحويل ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)، التي يكون بها x_{1} وx_{2} حلولاً للمعادلة التربيعية ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 12\left(-2\right)}}{2\times 12}
يمكن حل كل المعادلات بالصيغة ax^{2}+bx+c=0 باستخدام الصيغة التربيعية: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. وتقدم الصيغة التربيعية حلين، أحدهما عندما يكون ± جمعاً والآخر عندما يكون طرحاً.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 12\left(-2\right)}}{2\times 12}
مربع -5.
x=\frac{-\left(-5\right)±\sqrt{25-48\left(-2\right)}}{2\times 12}
اضرب -4 في 12.
x=\frac{-\left(-5\right)±\sqrt{25+96}}{2\times 12}
اضرب -48 في -2.
x=\frac{-\left(-5\right)±\sqrt{121}}{2\times 12}
اجمع 25 مع 96.
x=\frac{-\left(-5\right)±11}{2\times 12}
استخدم الجذر التربيعي للعدد 121.
x=\frac{5±11}{2\times 12}
مقابل -5 هو 5.
x=\frac{5±11}{24}
اضرب 2 في 12.
x=\frac{16}{24}
حل المعادلة x=\frac{5±11}{24} الآن عندما يكون ± موجباً. اجمع 5 مع 11.
x=\frac{2}{3}
اختزل الكسر \frac{16}{24} إلى أبسط قيمة من خلال استخراج 8 وشطبه.
x=-\frac{6}{24}
حل المعادلة x=\frac{5±11}{24} الآن عندما يكون ± سالباً. اطرح 11 من 5.
x=-\frac{1}{4}
اختزل الكسر \frac{-6}{24} إلى أبسط قيمة من خلال استخراج 6 وشطبه.
12x^{2}-5x-2=12\left(x-\frac{2}{3}\right)\left(x-\left(-\frac{1}{4}\right)\right)
حلل التعبير الأصلي إلى عوامل باستخدام ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). عوّض \frac{2}{3} بـ x_{1} و-\frac{1}{4} بـ x_{2}.
12x^{2}-5x-2=12\left(x-\frac{2}{3}\right)\left(x+\frac{1}{4}\right)
بسّط كل تعبيرات النموذج p-\left(-q\right) إلى p+q.
12x^{2}-5x-2=12\times \frac{3x-2}{3}\left(x+\frac{1}{4}\right)
اطرح \frac{2}{3} من x بإيجاد مقام مشترك وطرح البسط. بعد ذلك، اختزل الكسر إلى أبسط قيمة إذا كان ذلك ممكناً.
12x^{2}-5x-2=12\times \frac{3x-2}{3}\times \frac{4x+1}{4}
اجمع \frac{1}{4} مع x من خلال إيجاد مقام مشترك وإضافة البسط. بعد ذلك، اختزل الكسر إلى أبسط قيمة إذا كان ذلك ممكناً.
12x^{2}-5x-2=12\times \frac{\left(3x-2\right)\left(4x+1\right)}{3\times 4}
اضرب \frac{3x-2}{3} في \frac{4x+1}{4} بضرب البسط في البسط والمقام في المقام. بعد ذلك، اختزل الكسر إلى أبسط قيمة إذا كان ذلك ممكناً.
12x^{2}-5x-2=12\times \frac{\left(3x-2\right)\left(4x+1\right)}{12}
اضرب 3 في 4.
12x^{2}-5x-2=\left(3x-2\right)\left(4x+1\right)
شطب العامل المشترك الأكبر 12 في 12 و12.