حل مسائل x
x=6\sqrt{6}\approx 14.696938457
رسم بياني
مشاركة
تم النسخ للحافظة
12\sqrt{2}=\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}x
احذف جذور مقام ال\frac{2}{\sqrt{3}} بضرب البسط والمقام ب\sqrt{3}.
12\sqrt{2}=\frac{2\sqrt{3}}{3}x
إيجاد مربع \sqrt{3} هو 3.
12\sqrt{2}=\frac{2\sqrt{3}x}{3}
التعبير عن \frac{2\sqrt{3}}{3}x ككسر فردي.
\frac{2\sqrt{3}x}{3}=12\sqrt{2}
قم بتبديل الطرفين بحيث تكون كل الحدود المتغيرة على اليسار.
2\sqrt{3}x=36\sqrt{2}
اضرب طرفي المعادلة في 3.
\frac{2\sqrt{3}x}{2\sqrt{3}}=\frac{36\sqrt{2}}{2\sqrt{3}}
قسمة طرفي المعادلة على 2\sqrt{3}.
x=\frac{36\sqrt{2}}{2\sqrt{3}}
القسمة على 2\sqrt{3} تؤدي إلى التراجع عن الضرب في 2\sqrt{3}.
x=6\sqrt{6}
اقسم 36\sqrt{2} على 2\sqrt{3}.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}