حل مسائل x
x=\frac{\log(5)}{4}\approx 0.174742501
حل مسائل x (complex solution)
x=\frac{\pi n_{1}i}{2\ln(10)}+\frac{\log_{10}\left(5\right)}{4}
n_{1}\in \mathrm{Z}
رسم بياني
مشاركة
تم النسخ للحافظة
10^{4x}=5
استخدم قواعد اللوغاريتمات والأسس لحل المعادلة.
\log(10^{4x})=\log(5)
استخدم لوغاريتم طرفي المعادلة.
4x\log(10)=\log(5)
لوغاريتم العدد المرفوع إلى أس هو الأس مضروب في لوغاريتم العدد.
x=\frac{\log(5)}{4}
قسمة طرفي المعادلة على 4.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}