تقييم
\frac{10}{3}\approx 3.333333333
تحليل العوامل
\frac{2 \cdot 5}{3} = 3\frac{1}{3} = 3.3333333333333335
مشاركة
تم النسخ للحافظة
1+\frac{1}{1-\frac{1}{1+\frac{1}{\frac{3}{3}+\frac{1}{3}}}}
تحويل 1 إلى الكسر العشري \frac{3}{3}.
1+\frac{1}{1-\frac{1}{1+\frac{1}{\frac{3+1}{3}}}}
بما أن لكل من \frac{3}{3} و\frac{1}{3} المقام نفسه، يمكنك جمعهم عن طريق جمع قيمة البسط الخاصة بهما.
1+\frac{1}{1-\frac{1}{1+\frac{1}{\frac{4}{3}}}}
اجمع 3 مع 1 لتحصل على 4.
1+\frac{1}{1-\frac{1}{1+1\times \frac{3}{4}}}
اقسم 1 على \frac{4}{3} من خلال ضرب 1 في مقلوب \frac{4}{3}.
1+\frac{1}{1-\frac{1}{1+\frac{3}{4}}}
اضرب 1 في \frac{3}{4} لتحصل على \frac{3}{4}.
1+\frac{1}{1-\frac{1}{\frac{4}{4}+\frac{3}{4}}}
تحويل 1 إلى الكسر العشري \frac{4}{4}.
1+\frac{1}{1-\frac{1}{\frac{4+3}{4}}}
بما أن لكل من \frac{4}{4} و\frac{3}{4} المقام نفسه، يمكنك جمعهم عن طريق جمع قيمة البسط الخاصة بهما.
1+\frac{1}{1-\frac{1}{\frac{7}{4}}}
اجمع 4 مع 3 لتحصل على 7.
1+\frac{1}{1-1\times \frac{4}{7}}
اقسم 1 على \frac{7}{4} من خلال ضرب 1 في مقلوب \frac{7}{4}.
1+\frac{1}{1-\frac{4}{7}}
اضرب 1 في \frac{4}{7} لتحصل على \frac{4}{7}.
1+\frac{1}{\frac{7}{7}-\frac{4}{7}}
تحويل 1 إلى الكسر العشري \frac{7}{7}.
1+\frac{1}{\frac{7-4}{7}}
بما أن لكل من \frac{7}{7} و\frac{4}{7} المقام نفسه، يمكنك طرحهما عن طريق طرح قيمة البسط الخاصة بهما.
1+\frac{1}{\frac{3}{7}}
اطرح 4 من 7 لتحصل على 3.
1+1\times \frac{7}{3}
اقسم 1 على \frac{3}{7} من خلال ضرب 1 في مقلوب \frac{3}{7}.
1+\frac{7}{3}
اضرب 1 في \frac{7}{3} لتحصل على \frac{7}{3}.
\frac{3}{3}+\frac{7}{3}
تحويل 1 إلى الكسر العشري \frac{3}{3}.
\frac{3+7}{3}
بما أن لكل من \frac{3}{3} و\frac{7}{3} المقام نفسه، يمكنك جمعهم عن طريق جمع قيمة البسط الخاصة بهما.
\frac{10}{3}
اجمع 3 مع 7 لتحصل على 10.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}