حل مسائل F_0
F_{0}=\frac{256000000000000000gm}{18534826910812257}
حل مسائل g
\left\{\begin{matrix}g=\frac{18534826910812257F_{0}}{256000000000000000m}\text{, }&m\neq 0\\g\in \mathrm{R}\text{, }&F_{0}=0\text{ and }m=0\end{matrix}\right.
مشاركة
تم النسخ للحافظة
0.25 \cdot F 0.6427876096865394 + F 0.766044443118978 = m g {(3 + 9.8)}
Evaluate trigonometric functions in the problem
0.16069690242163485F_{0}+F_{0}\times 0.766044443118978=mg\left(3+9.8\right)
اضرب 0.25 في 0.6427876096865394 لتحصل على 0.16069690242163485.
0.92674134554061285F_{0}=mg\left(3+9.8\right)
اجمع 0.16069690242163485F_{0} مع F_{0}\times 0.766044443118978 لتحصل على 0.92674134554061285F_{0}.
0.92674134554061285F_{0}=mg\times 12.8
اجمع 3 مع 9.8 لتحصل على 12.8.
0.92674134554061285F_{0}=\frac{64gm}{5}
المعادلة بالصيغة العامة.
\frac{0.92674134554061285F_{0}}{0.92674134554061285}=\frac{64gm}{0.92674134554061285\times 5}
اقسم طرفي المعادلة على 0.92674134554061285، وذلك يساوي ضرب الطرفين في مقلوب الكسر.
F_{0}=\frac{64gm}{0.92674134554061285\times 5}
القسمة على 0.92674134554061285 تؤدي إلى التراجع عن الضرب في 0.92674134554061285.
F_{0}=\frac{256000000000000000gm}{18534826910812257}
اقسم \frac{64mg}{5} على 0.92674134554061285 من خلال ضرب \frac{64mg}{5} في مقلوب 0.92674134554061285.
0.25 \cdot F 0.6427876096865394 + F 0.766044443118978 = m g {(3 + 9.8)}
Evaluate trigonometric functions in the problem
0.16069690242163485F_{0}+F_{0}\times 0.766044443118978=mg\left(3+9.8\right)
اضرب 0.25 في 0.6427876096865394 لتحصل على 0.16069690242163485.
0.92674134554061285F_{0}=mg\left(3+9.8\right)
اجمع 0.16069690242163485F_{0} مع F_{0}\times 0.766044443118978 لتحصل على 0.92674134554061285F_{0}.
0.92674134554061285F_{0}=mg\times 12.8
اجمع 3 مع 9.8 لتحصل على 12.8.
mg\times 12.8=0.92674134554061285F_{0}
قم بتبديل الطرفين بحيث تكون كل الحدود المتغيرة على اليسار.
\frac{64m}{5}g=\frac{18534826910812257F_{0}}{20000000000000000}
المعادلة بالصيغة العامة.
\frac{5\times \frac{64m}{5}g}{64m}=\frac{18534826910812257F_{0}}{20000000000000000\times \frac{64m}{5}}
قسمة طرفي المعادلة على 12.8m.
g=\frac{18534826910812257F_{0}}{20000000000000000\times \frac{64m}{5}}
القسمة على 12.8m تؤدي إلى التراجع عن الضرب في 12.8m.
g=\frac{18534826910812257F_{0}}{256000000000000000m}
اقسم \frac{18534826910812257F_{0}}{20000000000000000} على 12.8m.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}