حل مسائل x (complex solution)
x=-\frac{\sqrt{21}i}{3}-1\approx -1-1.527525232i
x=2
x=\frac{\sqrt{21}i}{3}-1\approx -1+1.527525232i
حل مسائل x
x=2
رسم بياني
مشاركة
تم النسخ للحافظة
-2x+3x^{3}-20=0
اطرح 20 من الطرفين.
3x^{3}-2x-20=0
أعد ترتيب المعادلة لتصبح في الصيغة العامة. رتب الحدود من أكبر أس إلى أصغر أس.
±\frac{20}{3},±20,±\frac{10}{3},±10,±\frac{5}{3},±5,±\frac{4}{3},±4,±\frac{2}{3},±2,±\frac{1}{3},±1
بواسطة نسبي Root نظرية ، فان كافة جذور نسبي الخاصة بمتعدد الحدود موجودة في النموذج \frac{p}{q} ، حيث p يقسم ال-20 الثابت وq المعامل الرائدة 3. سرد جميع المرشحين \frac{p}{q}.
x=2
يمكنك العثور على أحد هذه الجذور من خلال محاولة إدخال كل القيم الصحيحة بدءاً من القيمة المطلقة الصغرى. إذا لم يتم العثور على جذور صحيحة، فجرب استخدام الأعداد الكسرية.
3x^{2}+6x+10=0
بواسطة المعامل نظرية ، يعد الx-k عاملا لحدود الشكل لكل k جذر. اقسم 3x^{3}-2x-20 على x-2 لتحصل على 3x^{2}+6x+10. حل المعادلة التي يساويها الناتج 0.
x=\frac{-6±\sqrt{6^{2}-4\times 3\times 10}}{2\times 3}
يمكن حل كل معادلات النموذج ax^{2}+bx+c=0 باستخدام الصيغة التربيعية: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. استبدل 3 بـ a، و6 بـ b و10 بـ c في الصيغة التربيعية.
x=\frac{-6±\sqrt{-84}}{6}
قم بإجراء العمليات الحسابية.
x=-\frac{\sqrt{21}i}{3}-1 x=\frac{\sqrt{21}i}{3}-1
حل المعادلة 3x^{2}+6x+10=0 عندما تكون العلامة ± علامة جمع و± علامة طرح.
x=2 x=-\frac{\sqrt{21}i}{3}-1 x=\frac{\sqrt{21}i}{3}-1
إدراج كافة الحلول التي تم العثور عليها.
-2x+3x^{3}-20=0
اطرح 20 من الطرفين.
3x^{3}-2x-20=0
أعد ترتيب المعادلة لتصبح في الصيغة العامة. رتب الحدود من أكبر أس إلى أصغر أس.
±\frac{20}{3},±20,±\frac{10}{3},±10,±\frac{5}{3},±5,±\frac{4}{3},±4,±\frac{2}{3},±2,±\frac{1}{3},±1
بواسطة نسبي Root نظرية ، فان كافة جذور نسبي الخاصة بمتعدد الحدود موجودة في النموذج \frac{p}{q} ، حيث p يقسم ال-20 الثابت وq المعامل الرائدة 3. سرد جميع المرشحين \frac{p}{q}.
x=2
يمكنك العثور على أحد هذه الجذور من خلال محاولة إدخال كل القيم الصحيحة بدءاً من القيمة المطلقة الصغرى. إذا لم يتم العثور على جذور صحيحة، فجرب استخدام الأعداد الكسرية.
3x^{2}+6x+10=0
بواسطة المعامل نظرية ، يعد الx-k عاملا لحدود الشكل لكل k جذر. اقسم 3x^{3}-2x-20 على x-2 لتحصل على 3x^{2}+6x+10. حل المعادلة التي يساويها الناتج 0.
x=\frac{-6±\sqrt{6^{2}-4\times 3\times 10}}{2\times 3}
يمكن حل كل معادلات النموذج ax^{2}+bx+c=0 باستخدام الصيغة التربيعية: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. استبدل 3 بـ a، و6 بـ b و10 بـ c في الصيغة التربيعية.
x=\frac{-6±\sqrt{-84}}{6}
قم بإجراء العمليات الحسابية.
x\in \emptyset
نظراً لعدم تعريف الجذر التربيعي لرقم سالب في الحقل الحقيقي، لا توجد حلول.
x=2
إدراج كافة الحلول التي تم العثور عليها.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}