تجاوز إلى المحتوى الرئيسي
تقييم
Tick mark Image
توسيع
Tick mark Image

مسائل مماثلة من البحث في الويب

مشاركة

\frac{\frac{a+2}{a\left(a-2\right)}+\frac{8}{\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
تحليل عوامل a^{2}-2a. تحليل عوامل 4-a^{2}.
\frac{\frac{\left(a+2\right)\left(-a-2\right)}{a\left(a-2\right)\left(-a-2\right)}+\frac{8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
لإضافة تعبيرات أو طرحها، قم بمضاعفتها لجعل المقامات متساوية. المضاعف المشترك الأصغر لـ a\left(a-2\right) و\left(a-2\right)\left(-a-2\right) هو a\left(a-2\right)\left(-a-2\right). اضرب \frac{a+2}{a\left(a-2\right)} في \frac{-a-2}{-a-2}. اضرب \frac{8}{\left(a-2\right)\left(-a-2\right)} في \frac{a}{a}.
\frac{\frac{\left(a+2\right)\left(-a-2\right)+8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
بما أن لكل من \frac{\left(a+2\right)\left(-a-2\right)}{a\left(a-2\right)\left(-a-2\right)} و\frac{8a}{a\left(a-2\right)\left(-a-2\right)} المقام نفسه، يمكنك جمعهم عن طريق جمع قيمة البسط الخاصة بهما.
\frac{\frac{-a^{2}-2a-2a-4+8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
تنفيذ عمليات الضرب في \left(a+2\right)\left(-a-2\right)+8a.
\frac{\frac{-a^{2}+4a-4}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
الجمع مثل الأعداد الموجودة في -a^{2}-2a-2a-4+8a.
\frac{\frac{\left(a-2\right)\left(-a+2\right)}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
حدد عوامل التعبيرات التي لم يتم تحديد عواملها بالفعل في \frac{-a^{2}+4a-4}{a\left(a-2\right)\left(-a-2\right)}.
\frac{\frac{-\left(a-2\right)\left(a-2\right)}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
استخراج العلامة السالبة في 2-a.
\frac{\frac{-\left(a-2\right)}{a\left(-a-2\right)}}{\frac{a-2}{a}}
حذف a-2 في البسط والمقام.
\frac{-\left(a-2\right)a}{a\left(-a-2\right)\left(a-2\right)}
اقسم \frac{-\left(a-2\right)}{a\left(-a-2\right)} على \frac{a-2}{a} من خلال ضرب \frac{-\left(a-2\right)}{a\left(-a-2\right)} في مقلوب \frac{a-2}{a}.
\frac{-1}{-a-2}
حذف a\left(a-2\right) في البسط والمقام.
\frac{\frac{a+2}{a\left(a-2\right)}+\frac{8}{\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
تحليل عوامل a^{2}-2a. تحليل عوامل 4-a^{2}.
\frac{\frac{\left(a+2\right)\left(-a-2\right)}{a\left(a-2\right)\left(-a-2\right)}+\frac{8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
لإضافة تعبيرات أو طرحها، قم بمضاعفتها لجعل المقامات متساوية. المضاعف المشترك الأصغر لـ a\left(a-2\right) و\left(a-2\right)\left(-a-2\right) هو a\left(a-2\right)\left(-a-2\right). اضرب \frac{a+2}{a\left(a-2\right)} في \frac{-a-2}{-a-2}. اضرب \frac{8}{\left(a-2\right)\left(-a-2\right)} في \frac{a}{a}.
\frac{\frac{\left(a+2\right)\left(-a-2\right)+8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
بما أن لكل من \frac{\left(a+2\right)\left(-a-2\right)}{a\left(a-2\right)\left(-a-2\right)} و\frac{8a}{a\left(a-2\right)\left(-a-2\right)} المقام نفسه، يمكنك جمعهم عن طريق جمع قيمة البسط الخاصة بهما.
\frac{\frac{-a^{2}-2a-2a-4+8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
تنفيذ عمليات الضرب في \left(a+2\right)\left(-a-2\right)+8a.
\frac{\frac{-a^{2}+4a-4}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
الجمع مثل الأعداد الموجودة في -a^{2}-2a-2a-4+8a.
\frac{\frac{\left(a-2\right)\left(-a+2\right)}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
حدد عوامل التعبيرات التي لم يتم تحديد عواملها بالفعل في \frac{-a^{2}+4a-4}{a\left(a-2\right)\left(-a-2\right)}.
\frac{\frac{-\left(a-2\right)\left(a-2\right)}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
استخراج العلامة السالبة في 2-a.
\frac{\frac{-\left(a-2\right)}{a\left(-a-2\right)}}{\frac{a-2}{a}}
حذف a-2 في البسط والمقام.
\frac{-\left(a-2\right)a}{a\left(-a-2\right)\left(a-2\right)}
اقسم \frac{-\left(a-2\right)}{a\left(-a-2\right)} على \frac{a-2}{a} من خلال ضرب \frac{-\left(a-2\right)}{a\left(-a-2\right)} في مقلوب \frac{a-2}{a}.
\frac{-1}{-a-2}
حذف a\left(a-2\right) في البسط والمقام.