تجاوز إلى المحتوى الرئيسي
تحليل العوامل
Tick mark Image
تقدير القيمة
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

a+b=-2 ab=1\left(-3\right)=-3
حلل عوامل التعبير بالتجميع. يجب أولاً إعادة كتابة التعبير كالتالي x^{2}+ax+bx-3. للعثور علي a وb ، قم باعداد نظام ليتم حله.
a=-3 b=1
بما ان ab سالبه ، فان الa وb لديها العلامات المقابلة. بما أن a+b سالب، فهذا يعني أن للرقم السالب قيمة مطلقة أكبر من الرقم الموجب. مثل هذا الزوج الوحيد هو حل النظام.
\left(x^{2}-3x\right)+\left(x-3\right)
إعادة كتابة x^{2}-2x-3 ك \left(x^{2}-3x\right)+\left(x-3\right).
x\left(x-3\right)+x-3
تحليل x في x^{2}-3x.
\left(x-3\right)\left(x+1\right)
تحليل المصطلحات الشائعة x-3 باستخدام الخاصية توزيع.
x^{2}-2x-3=0
يمكن تحديد عوامل متعددة الحدود التربيعية باستخدام التحويل ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)، التي يكون بها x_{1} وx_{2} حلولاً للمعادلة التربيعية ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
يمكن حل كل المعادلات بالصيغة ax^{2}+bx+c=0 باستخدام الصيغة التربيعية: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. وتقدم الصيغة التربيعية حلين، أحدهما عندما يكون ± جمعاً والآخر عندما يكون طرحاً.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
مربع -2.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
اضرب -4 في -3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
اجمع 4 مع 12.
x=\frac{-\left(-2\right)±4}{2}
استخدم الجذر التربيعي للعدد 16.
x=\frac{2±4}{2}
مقابل -2 هو 2.
x=\frac{6}{2}
حل المعادلة x=\frac{2±4}{2} الآن عندما يكون ± موجباً. اجمع 2 مع 4.
x=3
اقسم 6 على 2.
x=-\frac{2}{2}
حل المعادلة x=\frac{2±4}{2} الآن عندما يكون ± سالباً. اطرح 4 من 2.
x=-1
اقسم -2 على 2.
x^{2}-2x-3=\left(x-3\right)\left(x-\left(-1\right)\right)
حلل التعبير الأصلي إلى عوامل باستخدام ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). عوّض 3 بـ x_{1} و-1 بـ x_{2}.
x^{2}-2x-3=\left(x-3\right)\left(x+1\right)
بسّط كل تعبيرات النموذج p-\left(-q\right) إلى p+q.