حل مسائل x (complex solution)
x=\frac{-1+\sqrt{7}i}{2}\approx -0.5+1.322875656i
x=\frac{-\sqrt{7}i-1}{2}\approx -0.5-1.322875656i
رسم بياني
مشاركة
تم النسخ للحافظة
x^{2}+x=-2
إضافة x لكلا الجانبين.
x^{2}+x+2=0
إضافة 2 لكلا الجانبين.
x=\frac{-1±\sqrt{1^{2}-4\times 2}}{2}
هذه المعادلة بالصيغة العامة: ax^{2}+bx+c=0. عوّض عن a بالقيمة 1 وعن b بالقيمة 1 وعن c بالقيمة 2 في الصيغة التربيعية، \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 2}}{2}
مربع 1.
x=\frac{-1±\sqrt{1-8}}{2}
اضرب -4 في 2.
x=\frac{-1±\sqrt{-7}}{2}
اجمع 1 مع -8.
x=\frac{-1±\sqrt{7}i}{2}
استخدم الجذر التربيعي للعدد -7.
x=\frac{-1+\sqrt{7}i}{2}
حل المعادلة x=\frac{-1±\sqrt{7}i}{2} الآن عندما يكون ± موجباً. اجمع -1 مع i\sqrt{7}.
x=\frac{-\sqrt{7}i-1}{2}
حل المعادلة x=\frac{-1±\sqrt{7}i}{2} الآن عندما يكون ± سالباً. اطرح i\sqrt{7} من -1.
x=\frac{-1+\sqrt{7}i}{2} x=\frac{-\sqrt{7}i-1}{2}
تم حل المعادلة الآن.
x^{2}+x=-2
إضافة x لكلا الجانبين.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-2+\left(\frac{1}{2}\right)^{2}
اقسم 1، معامل الحد x، على 2 لتحصل على \frac{1}{2}، ثم اجمع مربع \frac{1}{2} مع طرفي المعادلة. تجعل هذه الخطوة الطرف الأيسر من المعادلة مربعاً تاماً.
x^{2}+x+\frac{1}{4}=-2+\frac{1}{4}
تربيع \frac{1}{2} من خلال تربيع كل من البسط والمقام في الكسر.
x^{2}+x+\frac{1}{4}=-\frac{7}{4}
اجمع -2 مع \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=-\frac{7}{4}
عامل x^{2}+x+\frac{1}{4}. بشكل عام، عندما تكون x^{2}+bx+c مربعا مثاليا، يمكن تحليلها دائما ك "\left(x+\frac{b}{2}\right)^{2}".
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{7}{4}}
استخدم الجذر التربيعي لطرفي المعادلة.
x+\frac{1}{2}=\frac{\sqrt{7}i}{2} x+\frac{1}{2}=-\frac{\sqrt{7}i}{2}
تبسيط.
x=\frac{-1+\sqrt{7}i}{2} x=\frac{-\sqrt{7}i-1}{2}
اطرح \frac{1}{2} من طرفي المعادلة.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}