حل مسائل x
x=6
رسم بياني
مشاركة
تم النسخ للحافظة
x^{2}+36-12x=0
اطرح 12x من الطرفين.
x^{2}-12x+36=0
أعد ترتيب عامل متعدد الحدود ليكون بشكل قياسي. ضع الشروط بالترتيب من الأس الأكبر إلى الأصغر.
a+b=-12 ab=36
لحل المعادلة ، x^{2}-12x+36 العامل باستخدام x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) الصيغة. للعثور علي a وb ، قم باعداد نظام ليتم حله.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
بما ان ab ايجابيه ، فa وb لها نفس العلامة. بما أن a+b سالب، فسيكون كل من a وb سالباً. إدراج كافة أزواج الأعداد التي تعطي الناتج 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
حساب المجموع لكل زوج.
a=-6 b=-6
الحل هو الزوج الذي يعطي المجموع -12.
\left(x-6\right)\left(x-6\right)
أعد كتابة التعبير المحدد بعوامل \left(x+a\right)\left(x+b\right) باستخدام القيم التي تم الحصول عليها.
\left(x-6\right)^{2}
أعد الكتابة على شكل مربع ثنائي الحد.
x=6
للعثور على حل المعادلات، قم بحل x-6=0.
x^{2}+36-12x=0
اطرح 12x من الطرفين.
x^{2}-12x+36=0
أعد ترتيب عامل متعدد الحدود ليكون بشكل قياسي. ضع الشروط بالترتيب من الأس الأكبر إلى الأصغر.
a+b=-12 ab=1\times 36=36
لحل المعادلة، حلل عوامل الجانب الأيمن بالتجميع. يجب أولاً إعادة كتابة الجانب الأيمن كالتالي x^{2}+ax+bx+36. للعثور علي a وb ، قم باعداد نظام ليتم حله.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
بما ان ab ايجابيه ، فa وb لها نفس العلامة. بما أن a+b سالب، فسيكون كل من a وb سالباً. إدراج كافة أزواج الأعداد التي تعطي الناتج 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
حساب المجموع لكل زوج.
a=-6 b=-6
الحل هو الزوج الذي يعطي المجموع -12.
\left(x^{2}-6x\right)+\left(-6x+36\right)
إعادة كتابة x^{2}-12x+36 ك \left(x^{2}-6x\right)+\left(-6x+36\right).
x\left(x-6\right)-6\left(x-6\right)
قم بتحليل الx في أول و-6 في المجموعة الثانية.
\left(x-6\right)\left(x-6\right)
تحليل المصطلحات الشائعة x-6 باستخدام الخاصية توزيع.
\left(x-6\right)^{2}
أعد الكتابة على شكل مربع ثنائي الحد.
x=6
للعثور على حل المعادلات، قم بحل x-6=0.
x^{2}+36-12x=0
اطرح 12x من الطرفين.
x^{2}-12x+36=0
يمكن حل كل المعادلات بالصيغة ax^{2}+bx+c=0 باستخدام الصيغة التربيعية: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. وتقدم الصيغة التربيعية حلين، أحدهما عندما يكون ± جمعاً والآخر عندما يكون طرحاً.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 36}}{2}
هذه المعادلة بالصيغة العامة: ax^{2}+bx+c=0. عوّض عن a بالقيمة 1 وعن b بالقيمة -12 وعن c بالقيمة 36 في الصيغة التربيعية، \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 36}}{2}
مربع -12.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2}
اضرب -4 في 36.
x=\frac{-\left(-12\right)±\sqrt{0}}{2}
اجمع 144 مع -144.
x=-\frac{-12}{2}
استخدم الجذر التربيعي للعدد 0.
x=\frac{12}{2}
مقابل -12 هو 12.
x=6
اقسم 12 على 2.
x^{2}+36-12x=0
اطرح 12x من الطرفين.
x^{2}-12x=-36
اطرح 36 من الطرفين. حاصل طرح أي عدد من الصفر يكون القيمة السالبة للعدد نفسه.
x^{2}-12x+\left(-6\right)^{2}=-36+\left(-6\right)^{2}
اقسم -12، معامل الحد x، على 2 لتحصل على -6، ثم اجمع مربع -6 مع طرفي المعادلة. تجعل هذه الخطوة الطرف الأيسر من المعادلة مربعاً تاماً.
x^{2}-12x+36=-36+36
مربع -6.
x^{2}-12x+36=0
اجمع -36 مع 36.
\left(x-6\right)^{2}=0
عامل x^{2}-12x+36. بشكل عام، عندما تكون x^{2}+bx+c مربعا مثاليا، يمكن تحليلها دائما ك "\left(x+\frac{b}{2}\right)^{2}".
\sqrt{\left(x-6\right)^{2}}=\sqrt{0}
استخدم الجذر التربيعي لطرفي المعادلة.
x-6=0 x-6=0
تبسيط.
x=6 x=6
أضف 6 إلى طرفي المعادلة.
x=6
تم حل المعادلة الآن. الحلول هي نفسها.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}