تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

2x+3y=13,3x-2y=0
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
2x+3y=13
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
2x=-3y+13
اطرح 3y من طرفي المعادلة.
x=\frac{1}{2}\left(-3y+13\right)
قسمة طرفي المعادلة على 2.
x=-\frac{3}{2}y+\frac{13}{2}
اضرب \frac{1}{2} في -3y+13.
3\left(-\frac{3}{2}y+\frac{13}{2}\right)-2y=0
عوّض عن x بالقيمة \frac{-3y+13}{2} في المعادلة الأخرى، 3x-2y=0.
-\frac{9}{2}y+\frac{39}{2}-2y=0
اضرب 3 في \frac{-3y+13}{2}.
-\frac{13}{2}y+\frac{39}{2}=0
اجمع -\frac{9y}{2} مع -2y.
-\frac{13}{2}y=-\frac{39}{2}
اطرح \frac{39}{2} من طرفي المعادلة.
y=3
اقسم طرفي المعادلة على -\frac{13}{2}، وذلك يساوي ضرب الطرفين في مقلوب الكسر.
x=-\frac{3}{2}\times 3+\frac{13}{2}
عوّض عن y بالقيمة 3 في x=-\frac{3}{2}y+\frac{13}{2}. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=\frac{-9+13}{2}
اضرب -\frac{3}{2} في 3.
x=2
اجمع \frac{13}{2} مع -\frac{9}{2} من خلال إيجاد مقام مشترك وإضافة البسط. بعد ذلك، اختزل الكسر إلى أبسط قيمة إذا كان ذلك ممكناً.
x=2,y=3
تم إصلاح النظام الآن.
2x+3y=13,3x-2y=0
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}2&3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\0\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}2&3\\3&-2\end{matrix}\right))\left(\begin{matrix}2&3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-2\end{matrix}\right))\left(\begin{matrix}13\\0\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}2&3\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-2\end{matrix}\right))\left(\begin{matrix}13\\0\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-2\end{matrix}\right))\left(\begin{matrix}13\\0\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-3\times 3}&-\frac{3}{2\left(-2\right)-3\times 3}\\-\frac{3}{2\left(-2\right)-3\times 3}&\frac{2}{2\left(-2\right)-3\times 3}\end{matrix}\right)\left(\begin{matrix}13\\0\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{3}{13}\\\frac{3}{13}&-\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}13\\0\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\times 13\\\frac{3}{13}\times 13\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
إجراء الحساب.
x=2,y=3
استخرج عنصري المصفوفة x وy.
2x+3y=13,3x-2y=0
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
3\times 2x+3\times 3y=3\times 13,2\times 3x+2\left(-2\right)y=0
لجعل 2x و3x متساويين، اضرب كل حدود طرفي المعادلة الأولى في 3 وكل حدود طرفي المعادلة الثانية في 2.
6x+9y=39,6x-4y=0
تبسيط.
6x-6x+9y+4y=39
اطرح 6x-4y=0 من 6x+9y=39 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
9y+4y=39
اجمع 6x مع -6x. حذف الحدين 6x و-6x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
13y=39
اجمع 9y مع 4y.
y=3
قسمة طرفي المعادلة على 13.
3x-2\times 3=0
عوّض عن y بالقيمة 3 في 3x-2y=0. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
3x-6=0
اضرب -2 في 3.
3x=6
أضف 6 إلى طرفي المعادلة.
x=2
قسمة طرفي المعادلة على 3.
x=2,y=3
تم إصلاح النظام الآن.