تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

x+4y=25,-4x+3y=52
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
x+4y=25
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
x=-4y+25
اطرح 4y من طرفي المعادلة.
-4\left(-4y+25\right)+3y=52
عوّض عن x بالقيمة -4y+25 في المعادلة الأخرى، -4x+3y=52.
16y-100+3y=52
اضرب -4 في -4y+25.
19y-100=52
اجمع 16y مع 3y.
19y=152
أضف 100 إلى طرفي المعادلة.
y=8
قسمة طرفي المعادلة على 19.
x=-4\times 8+25
عوّض عن y بالقيمة 8 في x=-4y+25. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=-32+25
اضرب -4 في 8.
x=-7
اجمع 25 مع -32.
x=-7,y=8
تم إصلاح النظام الآن.
x+4y=25,-4x+3y=52
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&4\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\52\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&4\\-4&3\end{matrix}\right))\left(\begin{matrix}1&4\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-4&3\end{matrix}\right))\left(\begin{matrix}25\\52\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&4\\-4&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-4&3\end{matrix}\right))\left(\begin{matrix}25\\52\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-4&3\end{matrix}\right))\left(\begin{matrix}25\\52\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-4\left(-4\right)}&-\frac{4}{3-4\left(-4\right)}\\-\frac{-4}{3-4\left(-4\right)}&\frac{1}{3-4\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}25\\52\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{19}&-\frac{4}{19}\\\frac{4}{19}&\frac{1}{19}\end{matrix}\right)\left(\begin{matrix}25\\52\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{19}\times 25-\frac{4}{19}\times 52\\\frac{4}{19}\times 25+\frac{1}{19}\times 52\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\8\end{matrix}\right)
إجراء الحساب.
x=-7,y=8
استخرج عنصري المصفوفة x وy.
x+4y=25,-4x+3y=52
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
-4x-4\times 4y=-4\times 25,-4x+3y=52
لجعل x و-4x متساويين، اضرب كل حدود طرفي المعادلة الأولى في -4 وكل حدود طرفي المعادلة الثانية في 1.
-4x-16y=-100,-4x+3y=52
تبسيط.
-4x+4x-16y-3y=-100-52
اطرح -4x+3y=52 من -4x-16y=-100 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
-16y-3y=-100-52
اجمع -4x مع 4x. حذف الحدين -4x و4x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
-19y=-100-52
اجمع -16y مع -3y.
-19y=-152
اجمع -100 مع -52.
y=8
قسمة طرفي المعادلة على -19.
-4x+3\times 8=52
عوّض عن y بالقيمة 8 في -4x+3y=52. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
-4x+24=52
اضرب 3 في 8.
-4x=28
اطرح 24 من طرفي المعادلة.
x=-7
قسمة طرفي المعادلة على -4.
x=-7,y=8
تم إصلاح النظام الآن.