حل مسائل x، y
x=2
y=-3
رسم بياني
مشاركة
تم النسخ للحافظة
5x-2y=16,x+3y=-7
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
5x-2y=16
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
5x=2y+16
أضف 2y إلى طرفي المعادلة.
x=\frac{1}{5}\left(2y+16\right)
قسمة طرفي المعادلة على 5.
x=\frac{2}{5}y+\frac{16}{5}
اضرب \frac{1}{5} في 16+2y.
\frac{2}{5}y+\frac{16}{5}+3y=-7
عوّض عن x بالقيمة \frac{16+2y}{5} في المعادلة الأخرى، x+3y=-7.
\frac{17}{5}y+\frac{16}{5}=-7
اجمع \frac{2y}{5} مع 3y.
\frac{17}{5}y=-\frac{51}{5}
اطرح \frac{16}{5} من طرفي المعادلة.
y=-3
اقسم طرفي المعادلة على \frac{17}{5}، وذلك يساوي ضرب الطرفين في مقلوب الكسر.
x=\frac{2}{5}\left(-3\right)+\frac{16}{5}
عوّض عن y بالقيمة -3 في x=\frac{2}{5}y+\frac{16}{5}. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=\frac{-6+16}{5}
اضرب \frac{2}{5} في -3.
x=2
اجمع \frac{16}{5} مع -\frac{6}{5} من خلال إيجاد مقام مشترك وإضافة البسط. بعد ذلك، اختزل الكسر إلى أبسط قيمة إذا كان ذلك ممكناً.
x=2,y=-3
تم إصلاح النظام الآن.
5x-2y=16,x+3y=-7
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}5&-2\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\-7\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}5&-2\\1&3\end{matrix}\right))\left(\begin{matrix}5&-2\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\1&3\end{matrix}\right))\left(\begin{matrix}16\\-7\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}5&-2\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\1&3\end{matrix}\right))\left(\begin{matrix}16\\-7\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\1&3\end{matrix}\right))\left(\begin{matrix}16\\-7\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-\left(-2\right)}&-\frac{-2}{5\times 3-\left(-2\right)}\\-\frac{1}{5\times 3-\left(-2\right)}&\frac{5}{5\times 3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}16\\-7\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}&\frac{2}{17}\\-\frac{1}{17}&\frac{5}{17}\end{matrix}\right)\left(\begin{matrix}16\\-7\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}\times 16+\frac{2}{17}\left(-7\right)\\-\frac{1}{17}\times 16+\frac{5}{17}\left(-7\right)\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-3\end{matrix}\right)
إجراء الحساب.
x=2,y=-3
استخرج عنصري المصفوفة x وy.
5x-2y=16,x+3y=-7
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
5x-2y=16,5x+5\times 3y=5\left(-7\right)
لجعل 5x وx متساويين، اضرب كل حدود طرفي المعادلة الأولى في 1 وكل حدود طرفي المعادلة الثانية في 5.
5x-2y=16,5x+15y=-35
تبسيط.
5x-5x-2y-15y=16+35
اطرح 5x+15y=-35 من 5x-2y=16 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
-2y-15y=16+35
اجمع 5x مع -5x. حذف الحدين 5x و-5x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
-17y=16+35
اجمع -2y مع -15y.
-17y=51
اجمع 16 مع 35.
y=-3
قسمة طرفي المعادلة على -17.
x+3\left(-3\right)=-7
عوّض عن y بالقيمة -3 في x+3y=-7. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x-9=-7
اضرب 3 في -3.
x=2
أضف 9 إلى طرفي المعادلة.
x=2,y=-3
تم إصلاح النظام الآن.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}