حل مسائل y، x
x=-1
y=-1
رسم بياني
مشاركة
تم النسخ للحافظة
y-5x=4
خذ بعين الاعتبار المعادلة الأولى. اطرح 5x من الطرفين.
y+2x=-3
خذ بعين الاعتبار المعادلة الثانية. إضافة 2x لكلا الجانبين.
y-5x=4,y+2x=-3
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
y-5x=4
اختر أحدى المعادلات وأوجد قيمة y بعزل y على يسار علامة التساوي.
y=5x+4
أضف 5x إلى طرفي المعادلة.
5x+4+2x=-3
عوّض عن y بالقيمة 5x+4 في المعادلة الأخرى، y+2x=-3.
7x+4=-3
اجمع 5x مع 2x.
7x=-7
اطرح 4 من طرفي المعادلة.
x=-1
قسمة طرفي المعادلة على 7.
y=5\left(-1\right)+4
عوّض عن x بالقيمة -1 في y=5x+4. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة y مباشرةً.
y=-5+4
اضرب 5 في -1.
y=-1
اجمع 4 مع -5.
y=-1,x=-1
تم إصلاح النظام الآن.
y-5x=4
خذ بعين الاعتبار المعادلة الأولى. اطرح 5x من الطرفين.
y+2x=-3
خذ بعين الاعتبار المعادلة الثانية. إضافة 2x لكلا الجانبين.
y-5x=4,y+2x=-3
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&-5\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\-3\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&-5\\1&2\end{matrix}\right))\left(\begin{matrix}1&-5\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\1&2\end{matrix}\right))\left(\begin{matrix}4\\-3\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&-5\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\1&2\end{matrix}\right))\left(\begin{matrix}4\\-3\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\1&2\end{matrix}\right))\left(\begin{matrix}4\\-3\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-5\right)}&-\frac{-5}{2-\left(-5\right)}\\-\frac{1}{2-\left(-5\right)}&\frac{1}{2-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}4\\-3\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&\frac{5}{7}\\-\frac{1}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}4\\-3\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 4+\frac{5}{7}\left(-3\right)\\-\frac{1}{7}\times 4+\frac{1}{7}\left(-3\right)\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1\\-1\end{matrix}\right)
إجراء الحساب.
y=-1,x=-1
استخرج عنصري المصفوفة y وx.
y-5x=4
خذ بعين الاعتبار المعادلة الأولى. اطرح 5x من الطرفين.
y+2x=-3
خذ بعين الاعتبار المعادلة الثانية. إضافة 2x لكلا الجانبين.
y-5x=4,y+2x=-3
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
y-y-5x-2x=4+3
اطرح y+2x=-3 من y-5x=4 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
-5x-2x=4+3
اجمع y مع -y. حذف الحدين y و-y، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
-7x=4+3
اجمع -5x مع -2x.
-7x=7
اجمع 4 مع 3.
x=-1
قسمة طرفي المعادلة على -7.
y+2\left(-1\right)=-3
عوّض عن x بالقيمة -1 في y+2x=-3. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة y مباشرةً.
y-2=-3
اضرب 2 في -1.
y=-1
أضف 2 إلى طرفي المعادلة.
y=-1,x=-1
تم إصلاح النظام الآن.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}