حل مسائل y، x
x=0
y=0
رسم بياني
مشاركة
تم النسخ للحافظة
y-2x=0
خذ بعين الاعتبار المعادلة الأولى. اطرح 2x من الطرفين.
y-\frac{x}{3}=0
خذ بعين الاعتبار المعادلة الثانية. اطرح \frac{x}{3} من الطرفين.
3y-x=0
اضرب طرفي المعادلة في 3.
y-2x=0,3y-x=0
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
y-2x=0
اختر أحدى المعادلات وأوجد قيمة y بعزل y على يسار علامة التساوي.
y=2x
أضف 2x إلى طرفي المعادلة.
3\times 2x-x=0
عوّض عن y بالقيمة 2x في المعادلة الأخرى، 3y-x=0.
6x-x=0
اضرب 3 في 2x.
5x=0
اجمع 6x مع -x.
x=0
قسمة طرفي المعادلة على 5.
y=0
عوّض عن x بالقيمة 0 في y=2x. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة y مباشرةً.
y=0,x=0
تم إصلاح النظام الآن.
y-2x=0
خذ بعين الاعتبار المعادلة الأولى. اطرح 2x من الطرفين.
y-\frac{x}{3}=0
خذ بعين الاعتبار المعادلة الثانية. اطرح \frac{x}{3} من الطرفين.
3y-x=0
اضرب طرفي المعادلة في 3.
y-2x=0,3y-x=0
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&-2\\3&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}1&-2\\3&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&-2\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-2\times 3\right)}&-\frac{-2}{-1-\left(-2\times 3\right)}\\-\frac{3}{-1-\left(-2\times 3\right)}&\frac{1}{-1-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{2}{5}\\-\frac{3}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
اضرب المصفوفات.
y=0,x=0
استخرج عنصري المصفوفة y وx.
y-2x=0
خذ بعين الاعتبار المعادلة الأولى. اطرح 2x من الطرفين.
y-\frac{x}{3}=0
خذ بعين الاعتبار المعادلة الثانية. اطرح \frac{x}{3} من الطرفين.
3y-x=0
اضرب طرفي المعادلة في 3.
y-2x=0,3y-x=0
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
3y+3\left(-2\right)x=0,3y-x=0
لجعل y و3y متساويين، اضرب كل حدود طرفي المعادلة الأولى في 3 وكل حدود طرفي المعادلة الثانية في 1.
3y-6x=0,3y-x=0
تبسيط.
3y-3y-6x+x=0
اطرح 3y-x=0 من 3y-6x=0 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
-6x+x=0
اجمع 3y مع -3y. حذف الحدين 3y و-3y، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
-5x=0
اجمع -6x مع x.
x=0
قسمة طرفي المعادلة على -5.
3y=0
عوّض عن x بالقيمة 0 في 3y-x=0. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة y مباشرةً.
y=0
قسمة طرفي المعادلة على 3.
y=0,x=0
تم إصلاح النظام الآن.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}