حل مسائل x، y
x=4
y=2
رسم بياني
مشاركة
تم النسخ للحافظة
x-y=2,2x+y=10
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
x-y=2
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
x=y+2
أضف y إلى طرفي المعادلة.
2\left(y+2\right)+y=10
عوّض عن x بالقيمة y+2 في المعادلة الأخرى، 2x+y=10.
2y+4+y=10
اضرب 2 في y+2.
3y+4=10
اجمع 2y مع y.
3y=6
اطرح 4 من طرفي المعادلة.
y=2
قسمة طرفي المعادلة على 3.
x=2+2
عوّض عن y بالقيمة 2 في x=y+2. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=4
اجمع 2 مع 2.
x=4,y=2
تم إصلاح النظام الآن.
x-y=2,2x+y=10
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&-1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\10\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&-1\\2&1\end{matrix}\right))\left(\begin{matrix}1&-1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&1\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&-1\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&1\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&1\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\right)}&-\frac{-1}{1-\left(-2\right)}\\-\frac{2}{1-\left(-2\right)}&\frac{1}{1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}2\\10\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\-\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}2\\10\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 2+\frac{1}{3}\times 10\\-\frac{2}{3}\times 2+\frac{1}{3}\times 10\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
إجراء الحساب.
x=4,y=2
استخرج عنصري المصفوفة x وy.
x-y=2,2x+y=10
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
2x+2\left(-1\right)y=2\times 2,2x+y=10
لجعل x و2x متساويين، اضرب كل حدود طرفي المعادلة الأولى في 2 وكل حدود طرفي المعادلة الثانية في 1.
2x-2y=4,2x+y=10
تبسيط.
2x-2x-2y-y=4-10
اطرح 2x+y=10 من 2x-2y=4 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
-2y-y=4-10
اجمع 2x مع -2x. حذف الحدين 2x و-2x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
-3y=4-10
اجمع -2y مع -y.
-3y=-6
اجمع 4 مع -10.
y=2
قسمة طرفي المعادلة على -3.
2x+2=10
عوّض عن y بالقيمة 2 في 2x+y=10. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
2x=8
اطرح 2 من طرفي المعادلة.
x=4
قسمة طرفي المعادلة على 2.
x=4,y=2
تم إصلاح النظام الآن.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}