تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

x+y=5,2x+3y=20
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
x+y=5
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
x=-y+5
اطرح y من طرفي المعادلة.
2\left(-y+5\right)+3y=20
عوّض عن x بالقيمة -y+5 في المعادلة الأخرى، 2x+3y=20.
-2y+10+3y=20
اضرب 2 في -y+5.
y+10=20
اجمع -2y مع 3y.
y=10
اطرح 10 من طرفي المعادلة.
x=-10+5
عوّض عن y بالقيمة 10 في x=-y+5. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=-5
اجمع 5 مع -10.
x=-5,y=10
تم إصلاح النظام الآن.
x+y=5,2x+3y=20
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\20\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}5\\20\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&1\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}5\\20\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}5\\20\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2}&-\frac{1}{3-2}\\-\frac{2}{3-2}&\frac{1}{3-2}\end{matrix}\right)\left(\begin{matrix}5\\20\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right)\left(\begin{matrix}5\\20\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 5-20\\-2\times 5+20\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\10\end{matrix}\right)
إجراء الحساب.
x=-5,y=10
استخرج عنصري المصفوفة x وy.
x+y=5,2x+3y=20
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
2x+2y=2\times 5,2x+3y=20
لجعل x و2x متساويين، اضرب كل حدود طرفي المعادلة الأولى في 2 وكل حدود طرفي المعادلة الثانية في 1.
2x+2y=10,2x+3y=20
تبسيط.
2x-2x+2y-3y=10-20
اطرح 2x+3y=20 من 2x+2y=10 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
2y-3y=10-20
اجمع 2x مع -2x. حذف الحدين 2x و-2x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
-y=10-20
اجمع 2y مع -3y.
-y=-10
اجمع 10 مع -20.
y=10
قسمة طرفي المعادلة على -1.
2x+3\times 10=20
عوّض عن y بالقيمة 10 في 2x+3y=20. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
2x+30=20
اضرب 3 في 10.
2x=-10
اطرح 30 من طرفي المعادلة.
x=-5
قسمة طرفي المعادلة على 2.
x=-5,y=10
تم إصلاح النظام الآن.