تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

x+y=32,x-y=7
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
x+y=32
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
x=-y+32
اطرح y من طرفي المعادلة.
-y+32-y=7
عوّض عن x بالقيمة -y+32 في المعادلة الأخرى، x-y=7.
-2y+32=7
اجمع -y مع -y.
-2y=-25
اطرح 32 من طرفي المعادلة.
y=\frac{25}{2}
قسمة طرفي المعادلة على -2.
x=-\frac{25}{2}+32
عوّض عن y بالقيمة \frac{25}{2} في x=-y+32. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=\frac{39}{2}
اجمع 32 مع -\frac{25}{2}.
x=\frac{39}{2},y=\frac{25}{2}
تم إصلاح النظام الآن.
x+y=32,x-y=7
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}32\\7\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}32\\7\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}32\\7\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}32\\7\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}32\\7\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}32\\7\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 32+\frac{1}{2}\times 7\\\frac{1}{2}\times 32-\frac{1}{2}\times 7\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{39}{2}\\\frac{25}{2}\end{matrix}\right)
إجراء الحساب.
x=\frac{39}{2},y=\frac{25}{2}
استخرج عنصري المصفوفة x وy.
x+y=32,x-y=7
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
x-x+y+y=32-7
اطرح x-y=7 من x+y=32 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
y+y=32-7
اجمع x مع -x. حذف الحدين x و-x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
2y=32-7
اجمع y مع y.
2y=25
اجمع 32 مع -7.
y=\frac{25}{2}
قسمة طرفي المعادلة على 2.
x-\frac{25}{2}=7
عوّض عن y بالقيمة \frac{25}{2} في x-y=7. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=\frac{39}{2}
أضف \frac{25}{2} إلى طرفي المعادلة.
x=\frac{39}{2},y=\frac{25}{2}
تم إصلاح النظام الآن.