تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

x+y=27,x-y=-27
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
x+y=27
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
x=-y+27
اطرح y من طرفي المعادلة.
-y+27-y=-27
عوّض عن x بالقيمة -y+27 في المعادلة الأخرى، x-y=-27.
-2y+27=-27
اجمع -y مع -y.
-2y=-54
اطرح 27 من طرفي المعادلة.
y=27
قسمة طرفي المعادلة على -2.
x=-27+27
عوّض عن y بالقيمة 27 في x=-y+27. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=0
اجمع 27 مع -27.
x=0,y=27
تم إصلاح النظام الآن.
x+y=27,x-y=-27
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}27\\-27\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}27\\-27\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}27\\-27\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}27\\-27\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}27\\-27\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}27\\-27\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 27+\frac{1}{2}\left(-27\right)\\\frac{1}{2}\times 27-\frac{1}{2}\left(-27\right)\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\27\end{matrix}\right)
إجراء الحساب.
x=0,y=27
استخرج عنصري المصفوفة x وy.
x+y=27,x-y=-27
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
x-x+y+y=27+27
اطرح x-y=-27 من x+y=27 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
y+y=27+27
اجمع x مع -x. حذف الحدين x و-x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
2y=27+27
اجمع y مع y.
2y=54
اجمع 27 مع 27.
y=27
قسمة طرفي المعادلة على 2.
x-27=-27
عوّض عن y بالقيمة 27 في x-y=-27. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=0
أضف 27 إلى طرفي المعادلة.
x=0,y=27
تم إصلاح النظام الآن.