تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

x+3y=7,x+y=3
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
x+3y=7
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
x=-3y+7
اطرح 3y من طرفي المعادلة.
-3y+7+y=3
عوّض عن x بالقيمة -3y+7 في المعادلة الأخرى، x+y=3.
-2y+7=3
اجمع -3y مع y.
-2y=-4
اطرح 7 من طرفي المعادلة.
y=2
قسمة طرفي المعادلة على -2.
x=-3\times 2+7
عوّض عن y بالقيمة 2 في x=-3y+7. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=-6+7
اضرب -3 في 2.
x=1
اجمع 7 مع -6.
x=1,y=2
تم إصلاح النظام الآن.
x+3y=7,x+y=3
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\3\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&3\\1&1\end{matrix}\right))\left(\begin{matrix}1&3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&1\end{matrix}\right))\left(\begin{matrix}7\\3\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&3\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&1\end{matrix}\right))\left(\begin{matrix}7\\3\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&1\end{matrix}\right))\left(\begin{matrix}7\\3\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-3}&-\frac{3}{1-3}\\-\frac{1}{1-3}&\frac{1}{1-3}\end{matrix}\right)\left(\begin{matrix}7\\3\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{3}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}7\\3\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 7+\frac{3}{2}\times 3\\\frac{1}{2}\times 7-\frac{1}{2}\times 3\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
إجراء الحساب.
x=1,y=2
استخرج عنصري المصفوفة x وy.
x+3y=7,x+y=3
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
x-x+3y-y=7-3
اطرح x+y=3 من x+3y=7 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
3y-y=7-3
اجمع x مع -x. حذف الحدين x و-x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
2y=7-3
اجمع 3y مع -y.
2y=4
اجمع 7 مع -3.
y=2
قسمة طرفي المعادلة على 2.
x+2=3
عوّض عن y بالقيمة 2 في x+y=3. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=1
اطرح 2 من طرفي المعادلة.
x=1,y=2
تم إصلاح النظام الآن.