حل مسائل x، y
x=-2400
y=160
رسم بياني
مشاركة
تم النسخ للحافظة
x+20y=800
خذ بعين الاعتبار المعادلة الأولى. قم بتبديل الطرفين بحيث تكون كل الحدود المتغيرة على اليسار.
0=x+15y
خذ بعين الاعتبار المعادلة الثانية. اضرب 0 في 0 لتحصل على 0.
x+15y=0
قم بتبديل الطرفين بحيث تكون كل الحدود المتغيرة على اليسار.
x+20y=800,x+15y=0
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
x+20y=800
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
x=-20y+800
اطرح 20y من طرفي المعادلة.
-20y+800+15y=0
عوّض عن x بالقيمة -20y+800 في المعادلة الأخرى، x+15y=0.
-5y+800=0
اجمع -20y مع 15y.
-5y=-800
اطرح 800 من طرفي المعادلة.
y=160
قسمة طرفي المعادلة على -5.
x=-20\times 160+800
عوّض عن y بالقيمة 160 في x=-20y+800. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=-3200+800
اضرب -20 في 160.
x=-2400
اجمع 800 مع -3200.
x=-2400,y=160
تم إصلاح النظام الآن.
x+20y=800
خذ بعين الاعتبار المعادلة الأولى. قم بتبديل الطرفين بحيث تكون كل الحدود المتغيرة على اليسار.
0=x+15y
خذ بعين الاعتبار المعادلة الثانية. اضرب 0 في 0 لتحصل على 0.
x+15y=0
قم بتبديل الطرفين بحيث تكون كل الحدود المتغيرة على اليسار.
x+20y=800,x+15y=0
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&20\\1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}800\\0\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}1&20\\1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\0\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&20\\1&15\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\0\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\0\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{15-20}&-\frac{20}{15-20}\\-\frac{1}{15-20}&\frac{1}{15-20}\end{matrix}\right)\left(\begin{matrix}800\\0\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&4\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}800\\0\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 800\\\frac{1}{5}\times 800\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2400\\160\end{matrix}\right)
إجراء الحساب.
x=-2400,y=160
استخرج عنصري المصفوفة x وy.
x+20y=800
خذ بعين الاعتبار المعادلة الأولى. قم بتبديل الطرفين بحيث تكون كل الحدود المتغيرة على اليسار.
0=x+15y
خذ بعين الاعتبار المعادلة الثانية. اضرب 0 في 0 لتحصل على 0.
x+15y=0
قم بتبديل الطرفين بحيث تكون كل الحدود المتغيرة على اليسار.
x+20y=800,x+15y=0
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
x-x+20y-15y=800
اطرح x+15y=0 من x+20y=800 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
20y-15y=800
اجمع x مع -x. حذف الحدين x و-x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
5y=800
اجمع 20y مع -15y.
y=160
قسمة طرفي المعادلة على 5.
x+15\times 160=0
عوّض عن y بالقيمة 160 في x+15y=0. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x+2400=0
اضرب 15 في 160.
x=-2400
اطرح 2400 من طرفي المعادلة.
x=-2400,y=160
تم إصلاح النظام الآن.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}