حل مسائل x، y
x=3
y=5
رسم بياني
مشاركة
تم النسخ للحافظة
7x-2y=11,x+y=8
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
7x-2y=11
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
7x=2y+11
أضف 2y إلى طرفي المعادلة.
x=\frac{1}{7}\left(2y+11\right)
قسمة طرفي المعادلة على 7.
x=\frac{2}{7}y+\frac{11}{7}
اضرب \frac{1}{7} في 2y+11.
\frac{2}{7}y+\frac{11}{7}+y=8
عوّض عن x بالقيمة \frac{2y+11}{7} في المعادلة الأخرى، x+y=8.
\frac{9}{7}y+\frac{11}{7}=8
اجمع \frac{2y}{7} مع y.
\frac{9}{7}y=\frac{45}{7}
اطرح \frac{11}{7} من طرفي المعادلة.
y=5
اقسم طرفي المعادلة على \frac{9}{7}، وذلك يساوي ضرب الطرفين في مقلوب الكسر.
x=\frac{2}{7}\times 5+\frac{11}{7}
عوّض عن y بالقيمة 5 في x=\frac{2}{7}y+\frac{11}{7}. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=\frac{10+11}{7}
اضرب \frac{2}{7} في 5.
x=3
اجمع \frac{11}{7} مع \frac{10}{7} من خلال إيجاد مقام مشترك وإضافة البسط. بعد ذلك، اختزل الكسر إلى أبسط قيمة إذا كان ذلك ممكناً.
x=3,y=5
تم إصلاح النظام الآن.
7x-2y=11,x+y=8
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}7&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\8\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}7&-2\\1&1\end{matrix}\right))\left(\begin{matrix}7&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-2\\1&1\end{matrix}\right))\left(\begin{matrix}11\\8\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}7&-2\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-2\\1&1\end{matrix}\right))\left(\begin{matrix}11\\8\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-2\\1&1\end{matrix}\right))\left(\begin{matrix}11\\8\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7-\left(-2\right)}&-\frac{-2}{7-\left(-2\right)}\\-\frac{1}{7-\left(-2\right)}&\frac{7}{7-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}11\\8\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&\frac{2}{9}\\-\frac{1}{9}&\frac{7}{9}\end{matrix}\right)\left(\begin{matrix}11\\8\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\times 11+\frac{2}{9}\times 8\\-\frac{1}{9}\times 11+\frac{7}{9}\times 8\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\5\end{matrix}\right)
إجراء الحساب.
x=3,y=5
استخرج عنصري المصفوفة x وy.
7x-2y=11,x+y=8
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
7x-2y=11,7x+7y=7\times 8
لجعل 7x وx متساويين، اضرب كل حدود طرفي المعادلة الأولى في 1 وكل حدود طرفي المعادلة الثانية في 7.
7x-2y=11,7x+7y=56
تبسيط.
7x-7x-2y-7y=11-56
اطرح 7x+7y=56 من 7x-2y=11 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
-2y-7y=11-56
اجمع 7x مع -7x. حذف الحدين 7x و-7x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
-9y=11-56
اجمع -2y مع -7y.
-9y=-45
اجمع 11 مع -56.
y=5
قسمة طرفي المعادلة على -9.
x+5=8
عوّض عن y بالقيمة 5 في x+y=8. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=3
اطرح 5 من طرفي المعادلة.
x=3,y=5
تم إصلاح النظام الآن.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}