حل مسائل x، y
x=1
y=0
رسم بياني
مشاركة
تم النسخ للحافظة
5x-5y=5,-6x+5y=-6
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
5x-5y=5
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
5x=5y+5
أضف 5y إلى طرفي المعادلة.
x=\frac{1}{5}\left(5y+5\right)
قسمة طرفي المعادلة على 5.
x=y+1
اضرب \frac{1}{5} في 5+5y.
-6\left(y+1\right)+5y=-6
عوّض عن x بالقيمة y+1 في المعادلة الأخرى، -6x+5y=-6.
-6y-6+5y=-6
اضرب -6 في y+1.
-y-6=-6
اجمع -6y مع 5y.
-y=0
أضف 6 إلى طرفي المعادلة.
y=0
قسمة طرفي المعادلة على -1.
x=1
عوّض عن y بالقيمة 0 في x=y+1. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=1,y=0
تم إصلاح النظام الآن.
5x-5y=5,-6x+5y=-6
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-6\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right))\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right))\left(\begin{matrix}5\\-6\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}5&-5\\-6&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right))\left(\begin{matrix}5\\-6\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right))\left(\begin{matrix}5\\-6\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-\left(-5\left(-6\right)\right)}&-\frac{-5}{5\times 5-\left(-5\left(-6\right)\right)}\\-\frac{-6}{5\times 5-\left(-5\left(-6\right)\right)}&\frac{5}{5\times 5-\left(-5\left(-6\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\-6\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-1\\-\frac{6}{5}&-1\end{matrix}\right)\left(\begin{matrix}5\\-6\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5-\left(-6\right)\\-\frac{6}{5}\times 5-\left(-6\right)\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\0\end{matrix}\right)
إجراء الحساب.
x=1,y=0
استخرج عنصري المصفوفة x وy.
5x-5y=5,-6x+5y=-6
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
-6\times 5x-6\left(-5\right)y=-6\times 5,5\left(-6\right)x+5\times 5y=5\left(-6\right)
لجعل 5x و-6x متساويين، اضرب كل حدود طرفي المعادلة الأولى في -6 وكل حدود طرفي المعادلة الثانية في 5.
-30x+30y=-30,-30x+25y=-30
تبسيط.
-30x+30x+30y-25y=-30+30
اطرح -30x+25y=-30 من -30x+30y=-30 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
30y-25y=-30+30
اجمع -30x مع 30x. حذف الحدين -30x و30x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
5y=-30+30
اجمع 30y مع -25y.
5y=0
اجمع -30 مع 30.
y=0
قسمة طرفي المعادلة على 5.
-6x=-6
عوّض عن y بالقيمة 0 في -6x+5y=-6. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=1
قسمة طرفي المعادلة على -6.
x=1,y=0
تم إصلاح النظام الآن.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}