تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

5x+2y=10,4x+y=8
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
5x+2y=10
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
5x=-2y+10
اطرح 2y من طرفي المعادلة.
x=\frac{1}{5}\left(-2y+10\right)
قسمة طرفي المعادلة على 5.
x=-\frac{2}{5}y+2
اضرب \frac{1}{5} في -2y+10.
4\left(-\frac{2}{5}y+2\right)+y=8
عوّض عن x بالقيمة -\frac{2y}{5}+2 في المعادلة الأخرى، 4x+y=8.
-\frac{8}{5}y+8+y=8
اضرب 4 في -\frac{2y}{5}+2.
-\frac{3}{5}y+8=8
اجمع -\frac{8y}{5} مع y.
-\frac{3}{5}y=0
اطرح 8 من طرفي المعادلة.
y=0
اقسم طرفي المعادلة على -\frac{3}{5}، وذلك يساوي ضرب الطرفين في مقلوب الكسر.
x=2
عوّض عن y بالقيمة 0 في x=-\frac{2}{5}y+2. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=2,y=0
تم إصلاح النظام الآن.
5x+2y=10,4x+y=8
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}5&2\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\8\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}5&2\\4&1\end{matrix}\right))\left(\begin{matrix}5&2\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\4&1\end{matrix}\right))\left(\begin{matrix}10\\8\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}5&2\\4&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\4&1\end{matrix}\right))\left(\begin{matrix}10\\8\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\4&1\end{matrix}\right))\left(\begin{matrix}10\\8\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-2\times 4}&-\frac{2}{5-2\times 4}\\-\frac{4}{5-2\times 4}&\frac{5}{5-2\times 4}\end{matrix}\right)\left(\begin{matrix}10\\8\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{2}{3}\\\frac{4}{3}&-\frac{5}{3}\end{matrix}\right)\left(\begin{matrix}10\\8\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 10+\frac{2}{3}\times 8\\\frac{4}{3}\times 10-\frac{5}{3}\times 8\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
إجراء الحساب.
x=2,y=0
استخرج عنصري المصفوفة x وy.
5x+2y=10,4x+y=8
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
4\times 5x+4\times 2y=4\times 10,5\times 4x+5y=5\times 8
لجعل 5x و4x متساويين، اضرب كل حدود طرفي المعادلة الأولى في 4 وكل حدود طرفي المعادلة الثانية في 5.
20x+8y=40,20x+5y=40
تبسيط.
20x-20x+8y-5y=40-40
اطرح 20x+5y=40 من 20x+8y=40 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
8y-5y=40-40
اجمع 20x مع -20x. حذف الحدين 20x و-20x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
3y=40-40
اجمع 8y مع -5y.
3y=0
اجمع 40 مع -40.
y=0
قسمة طرفي المعادلة على 3.
4x=8
عوّض عن y بالقيمة 0 في 4x+y=8. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=2
قسمة طرفي المعادلة على 4.
x=2,y=0
تم إصلاح النظام الآن.