حل مسائل x، y
x=1
y=1
رسم بياني
مشاركة
تم النسخ للحافظة
4x-3y=1,5x+2y=7
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
4x-3y=1
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
4x=3y+1
أضف 3y إلى طرفي المعادلة.
x=\frac{1}{4}\left(3y+1\right)
قسمة طرفي المعادلة على 4.
x=\frac{3}{4}y+\frac{1}{4}
اضرب \frac{1}{4} في 3y+1.
5\left(\frac{3}{4}y+\frac{1}{4}\right)+2y=7
عوّض عن x بالقيمة \frac{3y+1}{4} في المعادلة الأخرى، 5x+2y=7.
\frac{15}{4}y+\frac{5}{4}+2y=7
اضرب 5 في \frac{3y+1}{4}.
\frac{23}{4}y+\frac{5}{4}=7
اجمع \frac{15y}{4} مع 2y.
\frac{23}{4}y=\frac{23}{4}
اطرح \frac{5}{4} من طرفي المعادلة.
y=1
اقسم طرفي المعادلة على \frac{23}{4}، وذلك يساوي ضرب الطرفين في مقلوب الكسر.
x=\frac{3+1}{4}
عوّض عن y بالقيمة 1 في x=\frac{3}{4}y+\frac{1}{4}. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=1
اجمع \frac{1}{4} مع \frac{3}{4} من خلال إيجاد مقام مشترك وإضافة البسط. بعد ذلك، اختزل الكسر إلى أبسط قيمة إذا كان ذلك ممكناً.
x=1,y=1
تم إصلاح النظام الآن.
4x-3y=1,5x+2y=7
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}4&-3\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\7\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}4&-3\\5&2\end{matrix}\right))\left(\begin{matrix}4&-3\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&2\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}4&-3\\5&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&2\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&2\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-\left(-3\times 5\right)}&-\frac{-3}{4\times 2-\left(-3\times 5\right)}\\-\frac{5}{4\times 2-\left(-3\times 5\right)}&\frac{4}{4\times 2-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}1\\7\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{23}&\frac{3}{23}\\-\frac{5}{23}&\frac{4}{23}\end{matrix}\right)\left(\begin{matrix}1\\7\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{23}+\frac{3}{23}\times 7\\-\frac{5}{23}+\frac{4}{23}\times 7\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
إجراء الحساب.
x=1,y=1
استخرج عنصري المصفوفة x وy.
4x-3y=1,5x+2y=7
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
5\times 4x+5\left(-3\right)y=5,4\times 5x+4\times 2y=4\times 7
لجعل 4x و5x متساويين، اضرب كل حدود طرفي المعادلة الأولى في 5 وكل حدود طرفي المعادلة الثانية في 4.
20x-15y=5,20x+8y=28
تبسيط.
20x-20x-15y-8y=5-28
اطرح 20x+8y=28 من 20x-15y=5 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
-15y-8y=5-28
اجمع 20x مع -20x. حذف الحدين 20x و-20x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
-23y=5-28
اجمع -15y مع -8y.
-23y=-23
اجمع 5 مع -28.
y=1
قسمة طرفي المعادلة على -23.
5x+2=7
عوّض عن y بالقيمة 1 في 5x+2y=7. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
5x=5
اطرح 2 من طرفي المعادلة.
x=1
قسمة طرفي المعادلة على 5.
x=1,y=1
تم إصلاح النظام الآن.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}