حل مسائل x، y
x=2
y=3
رسم بياني
مشاركة
تم النسخ للحافظة
3x-y=3,x-y=-1
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
3x-y=3
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
3x=y+3
أضف y إلى طرفي المعادلة.
x=\frac{1}{3}\left(y+3\right)
قسمة طرفي المعادلة على 3.
x=\frac{1}{3}y+1
اضرب \frac{1}{3} في y+3.
\frac{1}{3}y+1-y=-1
عوّض عن x بالقيمة \frac{y}{3}+1 في المعادلة الأخرى، x-y=-1.
-\frac{2}{3}y+1=-1
اجمع \frac{y}{3} مع -y.
-\frac{2}{3}y=-2
اطرح 1 من طرفي المعادلة.
y=3
اقسم طرفي المعادلة على -\frac{2}{3}، وذلك يساوي ضرب الطرفين في مقلوب الكسر.
x=\frac{1}{3}\times 3+1
عوّض عن y بالقيمة 3 في x=\frac{1}{3}y+1. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=1+1
اضرب \frac{1}{3} في 3.
x=2
اجمع 1 مع 1.
x=2,y=3
تم إصلاح النظام الآن.
3x-y=3,x-y=-1
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}3&-1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-1\right)}&-\frac{-1}{3\left(-1\right)-\left(-1\right)}\\-\frac{1}{3\left(-1\right)-\left(-1\right)}&\frac{3}{3\left(-1\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3-\frac{1}{2}\left(-1\right)\\\frac{1}{2}\times 3-\frac{3}{2}\left(-1\right)\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
إجراء الحساب.
x=2,y=3
استخرج عنصري المصفوفة x وy.
3x-y=3,x-y=-1
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
3x-x-y+y=3+1
اطرح x-y=-1 من 3x-y=3 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
3x-x=3+1
اجمع -y مع y. حذف الحدين -y وy، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
2x=3+1
اجمع 3x مع -x.
2x=4
اجمع 3 مع 1.
x=2
قسمة طرفي المعادلة على 2.
2-y=-1
عوّض عن x بالقيمة 2 في x-y=-1. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة y مباشرةً.
-y=-3
اطرح 2 من طرفي المعادلة.
x=2,y=3
تم إصلاح النظام الآن.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}