تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

2x+3y=10,3x+4y=15
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
2x+3y=10
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
2x=-3y+10
اطرح 3y من طرفي المعادلة.
x=\frac{1}{2}\left(-3y+10\right)
قسمة طرفي المعادلة على 2.
x=-\frac{3}{2}y+5
اضرب \frac{1}{2} في -3y+10.
3\left(-\frac{3}{2}y+5\right)+4y=15
عوّض عن x بالقيمة -\frac{3y}{2}+5 في المعادلة الأخرى، 3x+4y=15.
-\frac{9}{2}y+15+4y=15
اضرب 3 في -\frac{3y}{2}+5.
-\frac{1}{2}y+15=15
اجمع -\frac{9y}{2} مع 4y.
-\frac{1}{2}y=0
اطرح 15 من طرفي المعادلة.
y=0
ضرب طرفي المعادلة في -2.
x=5
عوّض عن y بالقيمة 0 في x=-\frac{3}{2}y+5. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=5,y=0
تم إصلاح النظام الآن.
2x+3y=10,3x+4y=15
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}2&3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\15\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}2&3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}10\\15\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}2&3\\3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}10\\15\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}10\\15\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-3\times 3}&-\frac{3}{2\times 4-3\times 3}\\-\frac{3}{2\times 4-3\times 3}&\frac{2}{2\times 4-3\times 3}\end{matrix}\right)\left(\begin{matrix}10\\15\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4&3\\3&-2\end{matrix}\right)\left(\begin{matrix}10\\15\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\times 10+3\times 15\\3\times 10-2\times 15\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\0\end{matrix}\right)
إجراء الحساب.
x=5,y=0
استخرج عنصري المصفوفة x وy.
2x+3y=10,3x+4y=15
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
3\times 2x+3\times 3y=3\times 10,2\times 3x+2\times 4y=2\times 15
لجعل 2x و3x متساويين، اضرب كل حدود طرفي المعادلة الأولى في 3 وكل حدود طرفي المعادلة الثانية في 2.
6x+9y=30,6x+8y=30
تبسيط.
6x-6x+9y-8y=30-30
اطرح 6x+8y=30 من 6x+9y=30 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
9y-8y=30-30
اجمع 6x مع -6x. حذف الحدين 6x و-6x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
y=30-30
اجمع 9y مع -8y.
y=0
اجمع 30 مع -30.
3x=15
عوّض عن y بالقيمة 0 في 3x+4y=15. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=5
قسمة طرفي المعادلة على 3.
x=5,y=0
تم إصلاح النظام الآن.