حل مسائل x، y، z
x=2\left(2\sqrt{21}\cos(\frac{\arccos(\frac{103\sqrt{21}}{588})}{3})+3\right)\approx 23.916140049\text{, }y=4\left(\sqrt{21}\cos(\frac{\arccos(\frac{103\sqrt{21}}{588})}{3})+3\right)\approx 29.916140049\text{, }z=2\left(-2\sqrt{21}\cos(\frac{\arccos(\frac{103\sqrt{21}}{588})}{3})+9\right)\approx 0.083859951
x=2\left(-3\sqrt{7}\sin(\frac{\arccos(\frac{103\sqrt{21}}{588})}{3})-\sqrt{21}\cos(\frac{\arccos(\frac{103\sqrt{21}}{588})}{3})+3\right)\approx -6.313505065\text{, }y=2\left(-3\sqrt{7}\sin(\frac{\arccos(\frac{103\sqrt{21}}{588})}{3})-\sqrt{21}\cos(\frac{\arccos(\frac{103\sqrt{21}}{588})}{3})+6\right)\approx -0.313505065\text{, }z=2\left(3\sqrt{7}\sin(\frac{\arccos(\frac{103\sqrt{21}}{588})}{3})+\sqrt{21}\cos(\frac{\arccos(\frac{103\sqrt{21}}{588})}{3})+9\right)\approx 30.313505065
x=2\left(3\sqrt{7}\sin(\frac{\arccos(\frac{103\sqrt{21}}{588})}{3})-\sqrt{21}\cos(\frac{\arccos(\frac{103\sqrt{21}}{588})}{3})+3\right)\approx 0.397365016\text{, }y=2\left(3\sqrt{7}\sin(\frac{\arccos(\frac{103\sqrt{21}}{588})}{3})-\sqrt{21}\cos(\frac{\arccos(\frac{103\sqrt{21}}{588})}{3})+6\right)\approx 6.397365016\text{, }z=2\left(\sqrt{21}\cos(\frac{\arccos(\frac{103\sqrt{21}}{588})}{3})-3\sqrt{7}\sin(\frac{\arccos(\frac{103\sqrt{21}}{588})}{3})+9\right)\approx 23.602634984
x=\frac{10\left(-2\sqrt{13}\cos(\frac{\arccos(\frac{3581\sqrt{13}}{16900})}{3})-5\right)}{3}\approx -40.049854909\text{, }y=\frac{20\left(\sqrt{13}\cos(\frac{\arccos(\frac{3581\sqrt{13}}{16900})}{3})+1\right)}{3}\approx 30.049854909\text{, }z=\frac{10\left(-2\sqrt{13}\cos(\frac{\arccos(\frac{3581\sqrt{13}}{16900})}{3})+7\right)}{3}\approx -0.049854909
x=\frac{10\left(\sqrt{13}\cos(\frac{\arccos(\frac{3581\sqrt{13}}{16900})}{3})-\sqrt{39}\sin(\frac{\arccos(\frac{3581\sqrt{13}}{16900})}{3})-5\right)}{3}\approx -9.797231198\text{, }y=\frac{10\left(\sqrt{39}\sin(\frac{\arccos(\frac{3581\sqrt{13}}{16900})}{3})-\sqrt{13}\cos(\frac{\arccos(\frac{3581\sqrt{13}}{16900})}{3})+2\right)}{3}\approx -0.202768802\text{, }z=\frac{10\left(\sqrt{13}\cos(\frac{\arccos(\frac{3581\sqrt{13}}{16900})}{3})-\sqrt{39}\sin(\frac{\arccos(\frac{3581\sqrt{13}}{16900})}{3})+7\right)}{3}\approx 30.202768802
مشاركة
تم النسخ للحافظة
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}