\left| \begin{array} { c c c } { 4 } & { - 10 } & { 2 } \\ { - 10 } & { 14 } & { 26 } \\ { 2 } & { 26 } & { - 34 } \end{array} \right|
تقييم
-2304
تحليل العوامل
-2304
مشاركة
تم النسخ للحافظة
det(\left(\begin{matrix}4&-10&2\\-10&14&26\\2&26&-34\end{matrix}\right))
البحث عن محدد المصفوفة باستخدام طريقة الأقطار.
\left(\begin{matrix}4&-10&2&4&-10\\-10&14&26&-10&14\\2&26&-34&2&26\end{matrix}\right)
وسّع المصفوفة الأصلية بتكرار أول عمودين كالعمودين الرابع والخامس.
4\times 14\left(-34\right)-10\times 26\times 2+2\left(-10\right)\times 26=-2944
بدءاً من الإدخال في أعلى اليسار، اضرب بطول الأقطار واجمع حواصل الضرب الناتجة.
2\times 14\times 2+26\times 26\times 4-34\left(-10\right)\left(-10\right)=-640
بدءاً من الإدخال في أسفل اليسار، اضرب لأعلى بطول الأقطار واجمع حواصل الضرب الناتجة.
-2944-\left(-640\right)
اطرح مجموع حواصل الضرب القطرية العلوية من مجموع حواصل الضرب القطرية السفلية.
-2304
اطرح -640 من -2944.
det(\left(\begin{matrix}4&-10&2\\-10&14&26\\2&26&-34\end{matrix}\right))
إيجاد محدد المصفوفة باستخدام طريقة توسع المحددات (تعرف أيضاً بتوسع المتعامل).
4det(\left(\begin{matrix}14&26\\26&-34\end{matrix}\right))-\left(-10det(\left(\begin{matrix}-10&26\\2&-34\end{matrix}\right))\right)+2det(\left(\begin{matrix}-10&14\\2&26\end{matrix}\right))
لتوسيع المحددات، اضرب كل عنصر في الصف الأول في المحددة الخاصة به، وهي محدد المصفوفة 2\times 2 الذي تم إيجاده بواسطة حذف الصف والعمود اللذان يحتويان على هذا العنصر، ثم اضرب في علامة موضع العنصر.
4\left(14\left(-34\right)-26\times 26\right)-\left(-10\left(-10\left(-34\right)-2\times 26\right)\right)+2\left(-10\times 26-2\times 14\right)
بالنسبة ل\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 المصفوفة ، يتم ad-bc المحدد.
4\left(-1152\right)-\left(-10\times 288\right)+2\left(-288\right)
تبسيط.
-2304
اجمع القيم للحصول على الناتج النهائي.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}