\left| \begin{array} { c c c } { - 7 } & { - 1 } & { 1 } \\ { - 6 } & { 0 } & { \frac { 1 } { 2 } } \\ { - 1 } & { 1 } & { 1 } \end{array} \right|
تقييم
-8
تحليل العوامل
-8
مشاركة
تم النسخ للحافظة
det(\left(\begin{matrix}-7&-1&1\\-6&0&\frac{1}{2}\\-1&1&1\end{matrix}\right))
البحث عن محدد المصفوفة باستخدام طريقة الأقطار.
\left(\begin{matrix}-7&-1&1&-7&-1\\-6&0&\frac{1}{2}&-6&0\\-1&1&1&-1&1\end{matrix}\right)
وسّع المصفوفة الأصلية بتكرار أول عمودين كالعمودين الرابع والخامس.
-\frac{1}{2}\left(-1\right)-6=-\frac{11}{2}
بدءاً من الإدخال في أعلى اليسار، اضرب بطول الأقطار واجمع حواصل الضرب الناتجة.
\frac{1}{2}\left(-7\right)-6\left(-1\right)=\frac{5}{2}
بدءاً من الإدخال في أسفل اليسار، اضرب لأعلى بطول الأقطار واجمع حواصل الضرب الناتجة.
-\frac{11}{2}-\frac{5}{2}
اطرح مجموع حواصل الضرب القطرية العلوية من مجموع حواصل الضرب القطرية السفلية.
-8
اطرح \frac{5}{2} من -\frac{11}{2} بإيجاد مقام مشترك وطرح البسط. بعد ذلك، اختزل الكسر إلى أبسط قيمة إذا كان ذلك ممكناً.
det(\left(\begin{matrix}-7&-1&1\\-6&0&\frac{1}{2}\\-1&1&1\end{matrix}\right))
إيجاد محدد المصفوفة باستخدام طريقة توسع المحددات (تعرف أيضاً بتوسع المتعامل).
-7det(\left(\begin{matrix}0&\frac{1}{2}\\1&1\end{matrix}\right))-\left(-det(\left(\begin{matrix}-6&\frac{1}{2}\\-1&1\end{matrix}\right))\right)+det(\left(\begin{matrix}-6&0\\-1&1\end{matrix}\right))
لتوسيع المحددات، اضرب كل عنصر في الصف الأول في المحددة الخاصة به، وهي محدد المصفوفة 2\times 2 الذي تم إيجاده بواسطة حذف الصف والعمود اللذان يحتويان على هذا العنصر، ثم اضرب في علامة موضع العنصر.
-7\left(-\frac{1}{2}\right)-\left(-\left(-6-\left(-\frac{1}{2}\right)\right)\right)-6
بالنسبة ل\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 المصفوفة ، يتم ad-bc المحدد.
-7\left(-\frac{1}{2}\right)-\left(-\left(-\frac{11}{2}\right)\right)-6
تبسيط.
-8
اجمع القيم للحصول على الناتج النهائي.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}