تجاوز إلى المحتوى الرئيسي
حل مسائل x، y، z
Tick mark Image

مسائل مماثلة من البحث في الويب

مشاركة

x=-y+3z-6+2c
يمكنك حل x+y-3z+6=2c لـ x.
3\left(-y+3z-6+2c\right)-y+z-t=2a -\left(-y+3z-6+2c\right)+3y-z+t=2b
استبدال -y+3z-6+2c بـ x في المعادلة الثانية والثالثة.
y=\frac{5}{2}z-\frac{9}{2}+\frac{3}{2}c-\frac{1}{4}t-\frac{1}{2}a z=y-\frac{1}{2}b+\frac{3}{2}-\frac{1}{2}c+\frac{1}{4}t
يمكنك حل هذه المعادلات في y وz على التوالي.
z=\frac{5}{2}z-\frac{9}{2}+\frac{3}{2}c-\frac{1}{4}t-\frac{1}{2}a-\frac{1}{2}b+\frac{3}{2}-\frac{1}{2}c+\frac{1}{4}t
استبدال \frac{5}{2}z-\frac{9}{2}+\frac{3}{2}c-\frac{1}{4}t-\frac{1}{2}a بـ y في المعادلة z=y-\frac{1}{2}b+\frac{3}{2}-\frac{1}{2}c+\frac{1}{4}t.
z=2-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b
يمكنك حل z=\frac{5}{2}z-\frac{9}{2}+\frac{3}{2}c-\frac{1}{4}t-\frac{1}{2}a-\frac{1}{2}b+\frac{3}{2}-\frac{1}{2}c+\frac{1}{4}t لـ z.
y=\frac{5}{2}\left(2-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-\frac{9}{2}+\frac{3}{2}c-\frac{1}{4}t-\frac{1}{2}a
استبدال 2-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b بـ z في المعادلة y=\frac{5}{2}z-\frac{9}{2}+\frac{3}{2}c-\frac{1}{4}t-\frac{1}{2}a.
y=\frac{1}{2}-\frac{1}{6}c-\frac{1}{4}t+\frac{1}{3}a+\frac{5}{6}b
حساب y من y=\frac{5}{2}\left(2-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-\frac{9}{2}+\frac{3}{2}c-\frac{1}{4}t-\frac{1}{2}a.
x=-\left(\frac{1}{2}-\frac{1}{6}c-\frac{1}{4}t+\frac{1}{3}a+\frac{5}{6}b\right)+3\left(2-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-6+2c
استبدال \frac{1}{2}-\frac{1}{6}c-\frac{1}{4}t+\frac{1}{3}a+\frac{5}{6}b بـ y واستبدال 2-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b بـ z في المعادلة x=-y+3z-6+2c.
x=-\frac{1}{2}+\frac{1}{6}c+\frac{1}{4}t+\frac{2}{3}a+\frac{1}{6}b
حساب x من x=-\left(\frac{1}{2}-\frac{1}{6}c-\frac{1}{4}t+\frac{1}{3}a+\frac{5}{6}b\right)+3\left(2-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-6+2c.
x=-\frac{1}{2}+\frac{1}{6}c+\frac{1}{4}t+\frac{2}{3}a+\frac{1}{6}b y=\frac{1}{2}-\frac{1}{6}c-\frac{1}{4}t+\frac{1}{3}a+\frac{5}{6}b z=2-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b
تم إصلاح النظام الآن.