\left\{ \begin{array} { l } { y = 2 x - 5 } \\ { y = - 4 x + 7 } \end{array} \right.
حل مسائل y، x
x=2
y=-1
رسم بياني
مشاركة
تم النسخ للحافظة
y-2x=-5
خذ بعين الاعتبار المعادلة الأولى. اطرح 2x من الطرفين.
y+4x=7
خذ بعين الاعتبار المعادلة الثانية. إضافة 4x لكلا الجانبين.
y-2x=-5,y+4x=7
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
y-2x=-5
اختر أحدى المعادلات وأوجد قيمة y بعزل y على يسار علامة التساوي.
y=2x-5
أضف 2x إلى طرفي المعادلة.
2x-5+4x=7
عوّض عن y بالقيمة 2x-5 في المعادلة الأخرى، y+4x=7.
6x-5=7
اجمع 2x مع 4x.
6x=12
أضف 5 إلى طرفي المعادلة.
x=2
قسمة طرفي المعادلة على 6.
y=2\times 2-5
عوّض عن x بالقيمة 2 في y=2x-5. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة y مباشرةً.
y=4-5
اضرب 2 في 2.
y=-1
اجمع -5 مع 4.
y=-1,x=2
تم إصلاح النظام الآن.
y-2x=-5
خذ بعين الاعتبار المعادلة الأولى. اطرح 2x من الطرفين.
y+4x=7
خذ بعين الاعتبار المعادلة الثانية. إضافة 4x لكلا الجانبين.
y-2x=-5,y+4x=7
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&-2\\1&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\7\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&-2\\1&4\end{matrix}\right))\left(\begin{matrix}1&-2\\1&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&4\end{matrix}\right))\left(\begin{matrix}-5\\7\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&-2\\1&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&4\end{matrix}\right))\left(\begin{matrix}-5\\7\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&4\end{matrix}\right))\left(\begin{matrix}-5\\7\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-2\right)}&-\frac{-2}{4-\left(-2\right)}\\-\frac{1}{4-\left(-2\right)}&\frac{1}{4-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-5\\7\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\-\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}-5\\7\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\left(-5\right)+\frac{1}{3}\times 7\\-\frac{1}{6}\left(-5\right)+\frac{1}{6}\times 7\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
إجراء الحساب.
y=-1,x=2
استخرج عنصري المصفوفة y وx.
y-2x=-5
خذ بعين الاعتبار المعادلة الأولى. اطرح 2x من الطرفين.
y+4x=7
خذ بعين الاعتبار المعادلة الثانية. إضافة 4x لكلا الجانبين.
y-2x=-5,y+4x=7
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
y-y-2x-4x=-5-7
اطرح y+4x=7 من y-2x=-5 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
-2x-4x=-5-7
اجمع y مع -y. حذف الحدين y و-y، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
-6x=-5-7
اجمع -2x مع -4x.
-6x=-12
اجمع -5 مع -7.
x=2
قسمة طرفي المعادلة على -6.
y+4\times 2=7
عوّض عن x بالقيمة 2 في y+4x=7. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة y مباشرةً.
y+8=7
اضرب 4 في 2.
y=-1
اطرح 8 من طرفي المعادلة.
y=-1,x=2
تم إصلاح النظام الآن.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}