تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

x-y=3,3x+y=8
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
x-y=3
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
x=y+3
أضف y إلى طرفي المعادلة.
3\left(y+3\right)+y=8
عوّض عن x بالقيمة y+3 في المعادلة الأخرى، 3x+y=8.
3y+9+y=8
اضرب 3 في y+3.
4y+9=8
اجمع 3y مع y.
4y=-1
اطرح 9 من طرفي المعادلة.
y=-\frac{1}{4}
قسمة طرفي المعادلة على 4.
x=-\frac{1}{4}+3
عوّض عن y بالقيمة -\frac{1}{4} في x=y+3. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=\frac{11}{4}
اجمع 3 مع -\frac{1}{4}.
x=\frac{11}{4},y=-\frac{1}{4}
تم إصلاح النظام الآن.
x-y=3,3x+y=8
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\8\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}1&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}3\\8\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&-1\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}3\\8\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}3\\8\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\right)}&-\frac{-1}{1-\left(-3\right)}\\-\frac{3}{1-\left(-3\right)}&\frac{1}{1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}3\\8\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{3}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}3\\8\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 3+\frac{1}{4}\times 8\\-\frac{3}{4}\times 3+\frac{1}{4}\times 8\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{4}\\-\frac{1}{4}\end{matrix}\right)
إجراء الحساب.
x=\frac{11}{4},y=-\frac{1}{4}
استخرج عنصري المصفوفة x وy.
x-y=3,3x+y=8
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
3x+3\left(-1\right)y=3\times 3,3x+y=8
لجعل x و3x متساويين، اضرب كل حدود طرفي المعادلة الأولى في 3 وكل حدود طرفي المعادلة الثانية في 1.
3x-3y=9,3x+y=8
تبسيط.
3x-3x-3y-y=9-8
اطرح 3x+y=8 من 3x-3y=9 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
-3y-y=9-8
اجمع 3x مع -3x. حذف الحدين 3x و-3x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
-4y=9-8
اجمع -3y مع -y.
-4y=1
اجمع 9 مع -8.
y=-\frac{1}{4}
قسمة طرفي المعادلة على -4.
3x-\frac{1}{4}=8
عوّض عن y بالقيمة -\frac{1}{4} في 3x+y=8. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
3x=\frac{33}{4}
أضف \frac{1}{4} إلى طرفي المعادلة.
x=\frac{11}{4}
قسمة طرفي المعادلة على 3.
x=\frac{11}{4},y=-\frac{1}{4}
تم إصلاح النظام الآن.