تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

x-y+2=0,x+y-4=0
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
x-y+2=0
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
x-y=-2
اطرح 2 من طرفي المعادلة.
x=y-2
أضف y إلى طرفي المعادلة.
y-2+y-4=0
عوّض عن x بالقيمة y-2 في المعادلة الأخرى، x+y-4=0.
2y-2-4=0
اجمع y مع y.
2y-6=0
اجمع -2 مع -4.
2y=6
أضف 6 إلى طرفي المعادلة.
y=3
قسمة طرفي المعادلة على 2.
x=3-2
عوّض عن y بالقيمة 3 في x=y-2. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=1
اجمع -2 مع 3.
x=1,y=3
تم إصلاح النظام الآن.
x-y+2=0,x+y-4=0
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\4\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\4\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&-1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\4\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\4\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-2\\4\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-2\\4\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-2\right)+\frac{1}{2}\times 4\\-\frac{1}{2}\left(-2\right)+\frac{1}{2}\times 4\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
إجراء الحساب.
x=1,y=3
استخرج عنصري المصفوفة x وy.
x-y+2=0,x+y-4=0
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
x-x-y-y+2+4=0
اطرح x+y-4=0 من x-y+2=0 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
-y-y+2+4=0
اجمع x مع -x. حذف الحدين x و-x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
-2y+2+4=0
اجمع -y مع -y.
-2y+6=0
اجمع 2 مع 4.
-2y=-6
اطرح 6 من طرفي المعادلة.
y=3
قسمة طرفي المعادلة على -2.
x+3-4=0
عوّض عن y بالقيمة 3 في x+y-4=0. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x-1=0
اجمع 3 مع -4.
x=1
أضف 1 إلى طرفي المعادلة.
x=1,y=3
تم إصلاح النظام الآن.