\left\{ \begin{array} { l } { x - 6 y = 3 } \\ { 2 x - 18 y = - 6 } \end{array} \right.
حل مسائل x، y
x=15
y=2
رسم بياني
مشاركة
تم النسخ للحافظة
x-6y=3,2x-18y=-6
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
x-6y=3
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
x=6y+3
أضف 6y إلى طرفي المعادلة.
2\left(6y+3\right)-18y=-6
عوّض عن x بالقيمة 6y+3 في المعادلة الأخرى، 2x-18y=-6.
12y+6-18y=-6
اضرب 2 في 6y+3.
-6y+6=-6
اجمع 12y مع -18y.
-6y=-12
اطرح 6 من طرفي المعادلة.
y=2
قسمة طرفي المعادلة على -6.
x=6\times 2+3
عوّض عن y بالقيمة 2 في x=6y+3. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=12+3
اضرب 6 في 2.
x=15
اجمع 3 مع 12.
x=15,y=2
تم إصلاح النظام الآن.
x-6y=3,2x-18y=-6
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-6\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right))\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right))\left(\begin{matrix}3\\-6\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&-6\\2&-18\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right))\left(\begin{matrix}3\\-6\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right))\left(\begin{matrix}3\\-6\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{18}{-18-\left(-6\times 2\right)}&-\frac{-6}{-18-\left(-6\times 2\right)}\\-\frac{2}{-18-\left(-6\times 2\right)}&\frac{1}{-18-\left(-6\times 2\right)}\end{matrix}\right)\left(\begin{matrix}3\\-6\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-1\\\frac{1}{3}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}3\\-6\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 3-\left(-6\right)\\\frac{1}{3}\times 3-\frac{1}{6}\left(-6\right)\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\2\end{matrix}\right)
إجراء الحساب.
x=15,y=2
استخرج عنصري المصفوفة x وy.
x-6y=3,2x-18y=-6
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
2x+2\left(-6\right)y=2\times 3,2x-18y=-6
لجعل x و2x متساويين، اضرب كل حدود طرفي المعادلة الأولى في 2 وكل حدود طرفي المعادلة الثانية في 1.
2x-12y=6,2x-18y=-6
تبسيط.
2x-2x-12y+18y=6+6
اطرح 2x-18y=-6 من 2x-12y=6 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
-12y+18y=6+6
اجمع 2x مع -2x. حذف الحدين 2x و-2x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
6y=6+6
اجمع -12y مع 18y.
6y=12
اجمع 6 مع 6.
y=2
قسمة طرفي المعادلة على 6.
2x-18\times 2=-6
عوّض عن y بالقيمة 2 في 2x-18y=-6. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
2x-36=-6
اضرب -18 في 2.
2x=30
أضف 36 إلى طرفي المعادلة.
x=15
قسمة طرفي المعادلة على 2.
x=15,y=2
تم إصلاح النظام الآن.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}