تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

x+y=1,x-y=6
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
x+y=1
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
x=-y+1
اطرح y من طرفي المعادلة.
-y+1-y=6
عوّض عن x بالقيمة -y+1 في المعادلة الأخرى، x-y=6.
-2y+1=6
اجمع -y مع -y.
-2y=5
اطرح 1 من طرفي المعادلة.
y=-\frac{5}{2}
قسمة طرفي المعادلة على -2.
x=-\left(-\frac{5}{2}\right)+1
عوّض عن y بالقيمة -\frac{5}{2} في x=-y+1. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=\frac{5}{2}+1
اضرب -1 في -\frac{5}{2}.
x=\frac{7}{2}
اجمع 1 مع \frac{5}{2}.
x=\frac{7}{2},y=-\frac{5}{2}
تم إصلاح النظام الآن.
x+y=1,x-y=6
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\6\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}1\\6\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}1\\6\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}+\frac{1}{2}\times 6\\\frac{1}{2}-\frac{1}{2}\times 6\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}\\-\frac{5}{2}\end{matrix}\right)
إجراء الحساب.
x=\frac{7}{2},y=-\frac{5}{2}
استخرج عنصري المصفوفة x وy.
x+y=1,x-y=6
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
x-x+y+y=1-6
اطرح x-y=6 من x+y=1 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
y+y=1-6
اجمع x مع -x. حذف الحدين x و-x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
2y=1-6
اجمع y مع y.
2y=-5
اجمع 1 مع -6.
y=-\frac{5}{2}
قسمة طرفي المعادلة على 2.
x-\left(-\frac{5}{2}\right)=6
عوّض عن y بالقيمة -\frac{5}{2} في x-y=6. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x+\frac{5}{2}=6
اضرب -1 في -\frac{5}{2}.
x=\frac{7}{2}
اطرح \frac{5}{2} من طرفي المعادلة.
x=\frac{7}{2},y=-\frac{5}{2}
تم إصلاح النظام الآن.