تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

x+y=0,3x-y=6
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
x+y=0
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
x=-y
اطرح y من طرفي المعادلة.
3\left(-1\right)y-y=6
عوّض عن x بالقيمة -y في المعادلة الأخرى، 3x-y=6.
-3y-y=6
اضرب 3 في -y.
-4y=6
اجمع -3y مع -y.
y=-\frac{3}{2}
قسمة طرفي المعادلة على -4.
x=-\left(-\frac{3}{2}\right)
عوّض عن y بالقيمة -\frac{3}{2} في x=-y. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=\frac{3}{2}
اضرب -1 في -\frac{3}{2}.
x=\frac{3}{2},y=-\frac{3}{2}
تم إصلاح النظام الآن.
x+y=0,3x-y=6
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\6\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&1\\3&-1\end{matrix}\right))\left(\begin{matrix}1&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\6\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&1\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\6\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\6\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-3}&-\frac{1}{-1-3}\\-\frac{3}{-1-3}&\frac{1}{-1-3}\end{matrix}\right)\left(\begin{matrix}0\\6\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\\frac{3}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}0\\6\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 6\\-\frac{1}{4}\times 6\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\-\frac{3}{2}\end{matrix}\right)
إجراء الحساب.
x=\frac{3}{2},y=-\frac{3}{2}
استخرج عنصري المصفوفة x وy.
x+y=0,3x-y=6
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
3x+3y=0,3x-y=6
لجعل x و3x متساويين، اضرب كل حدود طرفي المعادلة الأولى في 3 وكل حدود طرفي المعادلة الثانية في 1.
3x-3x+3y+y=-6
اطرح 3x-y=6 من 3x+3y=0 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
3y+y=-6
اجمع 3x مع -3x. حذف الحدين 3x و-3x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
4y=-6
اجمع 3y مع y.
y=-\frac{3}{2}
قسمة طرفي المعادلة على 4.
3x-\left(-\frac{3}{2}\right)=6
عوّض عن y بالقيمة -\frac{3}{2} في 3x-y=6. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
3x=\frac{9}{2}
اطرح \frac{3}{2} من طرفي المعادلة.
x=\frac{3}{2}
قسمة طرفي المعادلة على 3.
x=\frac{3}{2},y=-\frac{3}{2}
تم إصلاح النظام الآن.