تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

x+y=0,2x-y=2
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
x+y=0
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
x=-y
اطرح y من طرفي المعادلة.
2\left(-1\right)y-y=2
عوّض عن x بالقيمة -y في المعادلة الأخرى، 2x-y=2.
-2y-y=2
اضرب 2 في -y.
-3y=2
اجمع -2y مع -y.
y=-\frac{2}{3}
قسمة طرفي المعادلة على -3.
x=-\left(-\frac{2}{3}\right)
عوّض عن y بالقيمة -\frac{2}{3} في x=-y. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=\frac{2}{3}
اضرب -1 في -\frac{2}{3}.
x=\frac{2}{3},y=-\frac{2}{3}
تم إصلاح النظام الآن.
x+y=0,2x-y=2
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&1\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2}&-\frac{1}{-1-2}\\-\frac{2}{-1-2}&\frac{1}{-1-2}\end{matrix}\right)\left(\begin{matrix}0\\2\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}0\\2\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 2\\-\frac{1}{3}\times 2\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\\-\frac{2}{3}\end{matrix}\right)
إجراء الحساب.
x=\frac{2}{3},y=-\frac{2}{3}
استخرج عنصري المصفوفة x وy.
x+y=0,2x-y=2
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
2x+2y=0,2x-y=2
لجعل x و2x متساويين، اضرب كل حدود طرفي المعادلة الأولى في 2 وكل حدود طرفي المعادلة الثانية في 1.
2x-2x+2y+y=-2
اطرح 2x-y=2 من 2x+2y=0 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
2y+y=-2
اجمع 2x مع -2x. حذف الحدين 2x و-2x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
3y=-2
اجمع 2y مع y.
y=-\frac{2}{3}
قسمة طرفي المعادلة على 3.
2x-\left(-\frac{2}{3}\right)=2
عوّض عن y بالقيمة -\frac{2}{3} في 2x-y=2. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
2x=\frac{4}{3}
اطرح \frac{2}{3} من طرفي المعادلة.
x=\frac{2}{3}
قسمة طرفي المعادلة على 2.
x=\frac{2}{3},y=-\frac{2}{3}
تم إصلاح النظام الآن.