تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

x+4y=1,2x+y=-5
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
x+4y=1
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
x=-4y+1
اطرح 4y من طرفي المعادلة.
2\left(-4y+1\right)+y=-5
عوّض عن x بالقيمة -4y+1 في المعادلة الأخرى، 2x+y=-5.
-8y+2+y=-5
اضرب 2 في -4y+1.
-7y+2=-5
اجمع -8y مع y.
-7y=-7
اطرح 2 من طرفي المعادلة.
y=1
قسمة طرفي المعادلة على -7.
x=-4+1
عوّض عن y بالقيمة 1 في x=-4y+1. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=-3
اجمع 1 مع -4.
x=-3,y=1
تم إصلاح النظام الآن.
x+4y=1,2x+y=-5
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-5\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&4\\2&1\end{matrix}\right))\left(\begin{matrix}1&4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&1\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&4\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&1\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&1\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-4\times 2}&-\frac{4}{1-4\times 2}\\-\frac{2}{1-4\times 2}&\frac{1}{1-4\times 2}\end{matrix}\right)\left(\begin{matrix}1\\-5\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}&\frac{4}{7}\\\frac{2}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}1\\-5\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}+\frac{4}{7}\left(-5\right)\\\frac{2}{7}-\frac{1}{7}\left(-5\right)\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\1\end{matrix}\right)
إجراء الحساب.
x=-3,y=1
استخرج عنصري المصفوفة x وy.
x+4y=1,2x+y=-5
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
2x+2\times 4y=2,2x+y=-5
لجعل x و2x متساويين، اضرب كل حدود طرفي المعادلة الأولى في 2 وكل حدود طرفي المعادلة الثانية في 1.
2x+8y=2,2x+y=-5
تبسيط.
2x-2x+8y-y=2+5
اطرح 2x+y=-5 من 2x+8y=2 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
8y-y=2+5
اجمع 2x مع -2x. حذف الحدين 2x و-2x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
7y=2+5
اجمع 8y مع -y.
7y=7
اجمع 2 مع 5.
y=1
قسمة طرفي المعادلة على 7.
2x+1=-5
عوّض عن y بالقيمة 1 في 2x+y=-5. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
2x=-6
اطرح 1 من طرفي المعادلة.
x=-3
قسمة طرفي المعادلة على 2.
x=-3,y=1
تم إصلاح النظام الآن.