\left\{ \begin{array} { l } { x + 2 y = 7 } \\ { y - x = 1 } \end{array} \right.
حل مسائل x، y
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
y = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
رسم بياني
مشاركة
تم النسخ للحافظة
x+2y=7,-x+y=1
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
x+2y=7
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
x=-2y+7
اطرح 2y من طرفي المعادلة.
-\left(-2y+7\right)+y=1
عوّض عن x بالقيمة -2y+7 في المعادلة الأخرى، -x+y=1.
2y-7+y=1
اضرب -1 في -2y+7.
3y-7=1
اجمع 2y مع y.
3y=8
أضف 7 إلى طرفي المعادلة.
y=\frac{8}{3}
قسمة طرفي المعادلة على 3.
x=-2\times \frac{8}{3}+7
عوّض عن y بالقيمة \frac{8}{3} في x=-2y+7. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=-\frac{16}{3}+7
اضرب -2 في \frac{8}{3}.
x=\frac{5}{3}
اجمع 7 مع -\frac{16}{3}.
x=\frac{5}{3},y=\frac{8}{3}
تم إصلاح النظام الآن.
x+2y=7,-x+y=1
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&2\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\1\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}1&2\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&2\\-1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\left(-1\right)}&-\frac{2}{1-2\left(-1\right)}\\-\frac{-1}{1-2\left(-1\right)}&\frac{1}{1-2\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{2}{3}\\\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 7-\frac{2}{3}\\\frac{1}{3}\times 7+\frac{1}{3}\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}\\\frac{8}{3}\end{matrix}\right)
إجراء الحساب.
x=\frac{5}{3},y=\frac{8}{3}
استخرج عنصري المصفوفة x وy.
x+2y=7,-x+y=1
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
-x-2y=-7,-x+y=1
لجعل x و-x متساويين، اضرب كل حدود طرفي المعادلة الأولى في -1 وكل حدود طرفي المعادلة الثانية في 1.
-x+x-2y-y=-7-1
اطرح -x+y=1 من -x-2y=-7 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
-2y-y=-7-1
اجمع -x مع x. حذف الحدين -x وx، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
-3y=-7-1
اجمع -2y مع -y.
-3y=-8
اجمع -7 مع -1.
y=\frac{8}{3}
قسمة طرفي المعادلة على -3.
-x+\frac{8}{3}=1
عوّض عن y بالقيمة \frac{8}{3} في -x+y=1. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
-x=-\frac{5}{3}
اطرح \frac{8}{3} من طرفي المعادلة.
x=\frac{5}{3}
قسمة طرفي المعادلة على -1.
x=\frac{5}{3},y=\frac{8}{3}
تم إصلاح النظام الآن.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}